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High Speed, Precision Motion

Strategies for Lightweight
Structures

SUMMARY

During the period of this report, from May 16 to November 15, 1989, work continued

on (1) control for bracing of light weight arms and (2) modeling of closed chain flexible

dynamics. Work on (3) control of a small arm mounted on a large flexible arm to meet

demanding application requirements was supported for the first time, although the work

has been in progress for some months.

Mr. Dong-Soo Kwon has been looking at control for the bracing strategy. His early

work concluded that trajectory planning must be improved to best achieve the bracing

motion. He has now achieved very interesting results which enable the inverse dynamics of

flexible arms to be calculated for linearized motion in a more efficient manner than

previously published. The desired motion of the end point beginning at t = 0 and ending at

t = tf is used to calculate the required torque at the joint. The solution is separated into a

causal function that is zero for t < 0 and an accusal function which is zero for t > tf. He

has explored a number of alternative end point trajectories in terms of the peak torque

required, the amount of anticipatory action, and other issues. The single link case is the

immediate subject of this study, and an experimental verification of that case is being

performed. An abstract was submitted to the 1990 American Control Conference and that

paper is now in preparation.

Modeling with experimental verification of closed chain dynamics continues and will

soon result in the Ph.D. thesis of Mr. Jeh-Won Lee. Mr. J-W Lee is no longer supported

under this grant since he is completing his thesis while employed at the NASA Marshall

Space Flight Center. His work there is closely related to the thesis work carried out with

this NASA Grant. His modeling effort has pointed out inaccuracies that result from the

choice of numerical techniques used to incorporate the closed chain constraints when

modeling our experimental prototype RALF (Robotic Arm Large and Flexible). Since he
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is comparing his results to TREETOPS, a multi body code developed for and used by

NASA, direct improvements in the NASA modeling capabilities are expected. The

experimental verification work is suggesting new ways to make comparisons with systems

having structural linearity and joint and geometric nonlinearity. Mr. J-W Lee should

complete his Ph.D. degree in the first quarter of 1990.

Work on the small arm mounted on a large arm currently involves three students.

Mr. Soo-Han Lee has been studying the generation of inertial forces with a small arm that

will damp the large arm's vibration. Since the centralized control is complex to implement

and dependent on close coordination for stability (hence less robust) he has concentrated

recently on a "nearly decoupled" control. Decoupling is enhanced by the proper

configuration of the small arm. During the large arm motions this is reasonable, since the

small arm may not have a specified configuration. When the small arm configuration is

specified by the task other approaches may be necessary. Experimental verification using

the planar motions of RALF, a 20 ft arm, and SAM (Small Articulated Manipulator), a 3

degree of freedom arm, are proceeding. The control computer interfaces have now been

constructed. These experiments should begin in early 1990.

Mr. Jae Lew has orally presented his Ph.D. thesis proposal and is making several

adjustments to the draft document. He is studying the control and coordination problems

that arise in task execution using a small and large arm combination like RALF and SAM.

The disparate size of these arms and the serial mounting challenge us to use the advantages

of each arm most effectively to provide reach, precision, payload and speed improvements.

Existing approaches for redundant and dual arms are relevant, but not directly applicable.

In particular, by attaching th_ heavy payload to the large arm at the same point the small

arm is attached, a topology similar to the construction crane results. The small arm can

make precise adjustments to the payload position much as the construction worker places

the crane's load by pushing on it.

Mr. Jonathan Cameron joined the project in the Fall quarter. He has now successfully

completed his qualifying exams and will be studying the multiple arm dynamics and



coordination problem. His experience in the space program at JPL and his computer

experience make him an immediately valuable team member.

Previous researchers under this grant are continuing to publish papers on the

research it supported. Dr. Bau-San Yuan, currently with American Semiconductor

Equipment Technologies, has co-authored papers on his control results, and the draft of a

paper on symbolic modeling has been prepared. Dr. Sabri Cetinkunt, now at the University

of Illinois, Chicago, has submitted and published papers to several journals as documented

in the following.



RESEARCHTOPIC: Control of a Flexible Bracing Manipulator

RESEARCH ASSISTANT: Dong-Soo Kwon

SHORT TERM OBJECTIVE: Inverse Dynamics Calculation for Following The Desired

End Point Trajectory

1) INVERSE DYNAMICS

An inverse dynamic equation is derived from the direct dynamic equation of a flexible

one-link manipulator using the assumed mode method. The required torque for a certain

desired trajectory is obtained by synthesizing two solutions of the causal part and the

anticausal part of the inverse dynamic equations. Applying the calculated torque to the

ideal model of the system as open loop, the reference values of all state variables, which

match the desired end point trajectory, are provided. These can be used as reference

command values of all state variables for full state feedback tracking control. The

characteristics and the performance of the open loop control and the combination of the

open loop feedforward control and feedback control are studied in simulation and

experiment.

2) EXPERIMENTAL EQUIPMENT

To implement the torque profile which was obtained from the inverse dynamics, a

flexible 47" long aluminum single link manipulator is setup with a direct DC servo motor

and a current amplifier. Two strain gauges are attached at the base and the mid point of

the beam to measure the flexible vibration. A joint angle position sensor and a

tachometer are attached at the shaft of the motor. At the end of the beam, a mass is

attached to model the payload, and a force sensor is installed to measure the contact force

for bracing applications.
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PUBLICATION

The abstract of the paper "A Causal Approach to The Inverse Dynamics of a Flexible

Link Arm" was submitted to the 90' American Control Conference.
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RESEARCHTOPIC: Modeling of the ConstrainedDynamicsof a Flexible Robot

RESEARCHASSISTANT: Jeh-WonLee

Jeh-Won Lee is nearing the completion of his thesis. He is currently working for

NASA Marshall SpaceHight Centerwhile hecompleteshisdegree.

The numerical simulations of RALF (Robotic Arm Large and Flexible) were

comparedto resultsobtained from TREETOPS, a NASA sponsoredcode. Discrepancies

found appearto be dueto the meansof enforcingthe constraints for the TREETOPS code.

Mr. Lee is working with TREETOPS in his job at Marshall, and so has an excellent

opportunity to influence the direction of its development.

Experiments with the large motion behavior of RALF are being examined for various

geometrical nonlinearities, Coriolis and centrifugal forces influencing the behavior.

Experimental results for nonlinear systems lack an accepted way to categorize the results.

Mr. Lee is looking at sinmoidal motions and the resulting harmonics that appear in strain

and joint measurements.

Initial drafts of all chapters of Mr. Lee's thesis have been received. He should

complete his degree early in the Winter '90 quarter.

PUBLICATIONS

Lee, Jeh-Won and Wayne J. Book, "Efficient Dynamic Models for Flexible Robots,"

submitted to 1990 IEEE Robotics and Automation Conference, May 13-18,

Cincinnati, OH.



RESEARCHTOPIC: Control of a SmallWorking Robot on a Large Flexible Manipulator

for SuppressingVibrations

RESEARCHASSISTANT: SooHan Lee

The main researchactivities during this period were working for the constructionof

the I/O interface boards of the small robot, and studying for the development of the

control algorithms for the smallrobot (SAM, SmallArticulated Manipulator).

1) Although a prototype I/O board designedby Douglas J. Paul,who earnedhis MS

in March of this year, worked well for singlejoint operation, the board had reliability and

noiseproblems. In order to solvetheseproblems,printed circuit boardswere constructed.

In addition to the constructionof the I/O boards,the kinematics,inversekinematics,and

dynamicequationsof motion of the small robot were obtained for testingand calibrating

the total robot systemthat consistedof a controller, I/O interface boards,and mechanical

hardware.

2) Inertial forces are generated by the movement of SAM around a nominal

configuration. The nominal configuration is related to the direction of the inertial forces.

The direction of the inertial forcesaffect the stability of the vibration control of the large

arm on which SAM is mounted, RALF (Robotic Arm, Large and Flexible). The stability

analysishas beendoneusing lumpedmass-springanalogyand force diagrams.This analysis

showsthat decouplingis achievedif the nominal angleof the lower joint of SAM shouldbe

90 degreesto the upper link of RALF, and the angleof the upper joint of SAM shouldbe

90degreesto the lower link of RALF. Hencea control law hasthe termswhich force SAM

to keep thesenominal angles.

3) In order to suppressthe vibrations of RALF, the anglesof SAM should oscillate

around the nominal anglesand the oscillationshouldgenerateD or PD actionsin response

to the vibrations. The amplitudes of the oscillation need to be reasonablysmall for not

disturbing the stability and nominal configuration of SAM. Total control forces must

require less than the peak torque of a joint motor. Up to now the effectsof D and PD

control have been found; D control suppressesthe vibrations at nearly samerate as PD
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control, and needs less torque than PD control. PD control is more effective than D control

in keeping nominal angles.

PUBLICATIONS

Book, W. J. and Soo-Han Lee, "Vibration Control of a Large Flexible Manipulator by a

Small Robotic Arm," Pr0¢¢edings. 1989 American Control Conference. Pittsburgh,

PA, July , pp.

Lee, Soo-Han, Wayne J. Book, "Control of a Small Working Robot on a Large Flexible

Manipulator for Suppressing Vibrations," Submitted to 1990 American Control

Conference, May 23-25, 1990, San Diego, CA.

Book, W. J., Soon-Hart Lee, "Robot Vibration Control Using Inertial Damping Forces,"

submitted to 1990 CISM-IFTOMM Symposium on Theory and Practice of Robotic

Manipulators, Cracow, Poland, July 2-6, 1990.



RESEARCHTOPIC: Control Strategyfor CooperatingDisparate Manipulators

RESEARCHASSISTANT" JaeYoung Lew

Jae Lew's research seeks higher performance manipulators in large workspace,

particularly for those that require precise positioning and mating relatively massive

payloads. Demand for these manipulators can be found in someof the commonspace

maintenance and construction scenarios. As a solution, the concept of a small arm

mountedon the end of a large arm is introduced to provideprecisemotion aswell aslarge

workspace. From a real world experiencewith crane-humancoordination, when a heavy

payload is unloaded, we know that we can obtain precise positioning and high payload

capacity. This crane-humanconfiguration may be analogousto the topologyof bracingat

the tip of the small arm and having an end effector at the middle of the chain. Since

contact with the environment occursat a bracing point on the small arm, similarity to a

dual arm topology exists. However, this topology is different than dual arm in someways.

For example,the large arm (crane) is powerful and the small one (human) is capableof

precise positioning. To take full advantageof such disparate features, severalcontrol

strategieshavebeenstudied.

The short term objective is to investigate and identify the theory and the related

problem behind the disparate large/small arms coordination. The research activities

during the last 6 monthshaveincluded the following. First, related literatureswere briefly

reviewed. Second,the kinematic topologywassynthesizedin various combinationsof the

large/small armsfor the planarmotion. Third, the kinematicsfor the large/small armswas

studied when they are constrainedby a closedchair, and the advantageof the proposed

configurationwasanalyticallyproven. Finally, with the master/slaveapproach,the control

strategyfor the two armswasconsidered,andthe typicalforce control problem of aflexible

arm,so called,"non-colocatedcontrol" wasexamined.
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PUBLICATION

Lew, Jae Y. "Control Strategy for Cooperating Disparate Manipulators", (Draft) Ph.D.

thesis proposal, Department of Mechanical Engineering, Georgia Institute of

Technology, Atlanta, Georgia, Fall Quarter 1989.



11

RESEARCH TOPIC: Dynamics of Cooperating Robots

RESEARCH ASSISTANT: Jonathan M. Cameron

SHORT TERM OBJECTIVE: Assist in various research-related activ/ties and prepare for

Ph.D. qualifying exams.

Mr. Cameron worked as a graduate research assistant for one month of this reporting

period. During that time, he assisted with several research-related activities in the ME

Research building. Also, he helped in the system management of several computers

related to this research. Much of his time was spent in preparing for his Ph.D. qualifying

exams which he took in the beginning of November and passed.

In relation to this research, he prepared to write a robot simulation program that will

be useful in this research as well as a useful tool in the ME research building. He also

investigated several research ideas in preparation to forming a dissertation proposal.
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RESEARCHTOPIC: Control of a Large Flexible Arm

RESEARCH ASSISTANT: Bau-San Yuan (previously supported)

PUBLICATIONS:

Yuan, B-S, J. D. Huggins, and W. J. Book, "Small Motion Experiments on a Large Flexible

Arm with Strain Feedback," PrQeeedings. 1989 American Control Conference, June

21-23, 1989, Pittsburgh, PA, pp 2091-2095.

Yuan, B-S, W. J. Book and J. D. Huggins, "Decentralized Adaptive Control of a Two

Degree of Freedom Flexible Arm," to be presented, 1989 ASME Winter Annual

Meeting, December 10-15, 1989, San Francisco, CA.

Yuan, B-S, Wayne J. Book and Bruno Siciliano, "Direct Adaptive Control of a One-Link

Flexible Arm with Tracking," to appear J, of R0boti¢ Systems. December 1989.

Yuan, B-S, W. J. Book and J. D. Huggins, "Control of a Multi-Link Flexible Manipulator

with a Decentralized Approach," submitted to the llth IFAC World Confress, 13-17

August, 1990, Tallinn, USSR.
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RESEARCHTOPIC: Characterizationof the Limits of Control of Flexible Arms

RESEARCHASSISTANT: Sabri Cetinkunt

PUBLICATIONS:

Cetinkunt, Sabri and Wayne Book, "Performance Limitations of Joint Variable Feedback

Controllers Due to Manipulator Structural Flexibility," submitted to IEEE

Transactions on Robotics and Automation, June, 1989.

Cetinkunt, Sabri and Wayne J. Book, "Symbolic Modeling and Dynamic Simulation of

Robotic Manipulators with Compliant Links and Joints," Roboticz and Computer

Integrated Manufacturing, Vol. 5, No. 4, pp. 301-310, 1989.
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APPENDIX

The abstract of the paper "A Causal Approach to The Inverse Dynamics of a Flexible Link

Arm" was submitted to the 90' American Control Conference.

Book, W. J. and Soo-Han Lee, "Vibration Control of a Large Flexible Manipulator by a

Small Robotic Arm," Proceedings. 1989 American Control Conference, Pittsburgh,

PA, July 1989.

Book, W.J., Soon-Han Lee, "Robot Vibration Control Using Inertial Damping Forces,"

submitted to 1990 CISM-IFTOMM Symposium on Theory and Practice of Robotic

Manipulators, Cracow, Poland, July 2-6, 1990.

Cetinkunt, Sabri and Wayne Book, "Performance Limitations of Joint Variable Feedback

Controllers Due to Manipulator Structural Flexibility," submitted to IEEE

Transactions on Robotics and Automation, June, 1989.

Cetinkunt, Sabri and Wayne J. Book, "Symbolic Modeling and Dynamic Simulation of

Robotic Manipulators with Compliant Links and Joints," Robotics and Computer

Integrated Manufacturing. Vol. 5, No. 4, pp. 301-310, 1989.

Lee, Jeh-Won and Wayne J. Book, "Efficient Dynamic Models for Flexible Robots,"

submitted to 1990 IEEE Robotics and Automation Conference, May 13-18,

Cincinnati, OH.

Lee, Soo-Han, Wayne J. Book, "Control of a Small Working Robot on a Large Flexible

Manipulator for Suppressing Vibrations," Submitted to 1990 American Control

Conference, May 23-25, 1990, San Diego, CA.

Yuan, B-S, J. D. Huggins, and W. J. Book, "Small Motion Experiments on a Large Flexible

Arm with Strain Feedback," Proceedings. 1989 American Control Conference, June

21-23, 1989, Pittsburgh, PA, pp 2091-2095.

Yuan, B-S, W. J. Book and J. D. Huggins, "Decentralized Adaptive Control of a Two

Degree of Freedom Flexible Arm," to be presented, 1989 ASME Winter Annual

Meeting, December 10-15, 1989, San Francisco, CA.
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Yuan, B-S,WayneJ. Book and Bruno Siciliano, "Direct Adaptive Control of a One-Link
FlexibleArm with Tracking,"to appearJ. of Robotic Systems, December 1989.

Yuan, B-S, W. J. Book and J. D. Huggins, "Control of a Multi-Link Flexible Manipulator

with a Decentralized Approach," submitted to the llth IFAC World Confress, 13-17

August, 1990, Tallinn, USSR.



Submitted to 1990 American Control Conference, May 23-25, 1990,

San Diego, Ca.

A CAUSAL APPROACH TO THE INVERSE DYNAMICS OF A FLEXIBLE LINK ARM

Dong-Soo Kwon and Wayne J. Book

The George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332

ABSTRACT

An inverse dynamic equation which gives a causal solution for certain desired end

point trajectories is derived from a flexible arm by using model. The model uses assumed

modes to represent arm bending. The torque which is calculated from the inverse

dynamics is applied to the arm as an open loop control. However, the friction at the joint

and unmodelled dynamics causes tracking error and final positioning error. To

compensate for these errors, feedback control is added to the nominal joint position and

strain commands which are obtained from the forward dynamics model upon applying the

torque calculated from the desired end point trajectory. The results of open loop control

and the combination of open loop control and feedback control are shown in simulation

and experiment. Also, preliminary results for control of a flexible link arm as it contacts a

rigid surface to initiate a bracing action are presented.



To appear in Proceedings,1989 American ContrG
Conference, June 1989, Pittsburgh, PA.

VIBRATIONCONTROL OF A LARGE FLEXIBLE MANIPULATOR

BY A SMALL ROBOTIC ARM !

Wayne J. Book and Soo Han Lee

George IV. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

ABSTRACT

The vibration of a large flexible

manipulator is suppressed by inertial forces

induced by the joint torques of a small arm

which is located at the tip of the large

manipulator. The control of the small arm

is studied based on a slow and fast submodel

which are derived by applying the singular

perturbation technique. A composite

controller is designed to control the slow
and fast motion.

I. Introduction

A large, two degree of freedom flexible

manipulator which has a small arm at one
end has been constructed in the Flexible

Automation Laboratory at Georgia Institute

of Technology as shown in Figure 1, The

large manipulator is designated RALF

(Robotic Arm, Large and Flexible) and the

small arm is designated SAM (Small

Articulated Manipulator). The large

flexible manipulator is for gross motions,
and the small arm is for fine motions. The

large manipulator consists of two ten foot

long links made of aluminum tubing

actuated hydraulically through a parallel

link drive. The small arm is actuated by

three brushless D.C. motors through

harmonic drives at each joint. The small

arm could be used as a fast wrist or braced

robot. In this research, however, the small

arm is used as an inertial force generator for

suppressing flexible vibrations of the large

manipulator. This is consistent with many

applications where the small arm has little

to do during large arm motion.

To control the vibration of a light

weight manipulator, most researchers have

used the joint actuators of that manipulator.

The joint actuator also controls rigid body
motion. A few researchers have studied

using additional actuators which control

flexible motions. Zalucky, and Hardt [1]

designed two parallel beams with a

hydraulic actuator mounted at one end.

This arrangement was used to compensate

deflection and to improve dynamic

response. A similar configuration was

applied to tracking control [2]. Singh and

Schy [3] studied control of the vibraton by

external forces acting at one end. Their

approach required separate actuators solely

for vibration damping.

When the RALF changes

configuration, the vibration modes of the

manipulator change. SAM also can change

its configuration to increase the ability to

suppress vibrations of RALF.

In order to study the effectiveness of

the inertial force of SAM, the dynamics of

the manipulator is decomposed into a slow

and a fast submodel by applying the singular

perturbation technique [4]. A composite

controller is designed based on the

submodels.

i This work was partially supported by NEC

Corporation and the Computer Integrated

Manufacturing Systems Program at Georgia
Tech.

Two Time Scale Control

The dynamics of a flexible manipulator

is viewed as coupled rigid and flexible

motion which, under certain conditions, can



be also classified as slow and fast motion.

In this case, the system dynamics can be

analyzed by a two time scale model [4].

Several researchers have applied singular

perturbation theory to the control of

manipulators with flexible joints [5,6]. One
of the authors has studied the control of

flexible manipulators based on two time

scale models [7,8]. In this study, the
effectiveness of inertial forces of the small

arm for suppression of vibrations is studied

by two time scale model.

For initial understanding the large

flexible arm is considered with joints locked.

The deflection of each link is modeled with

one assumed mode. Based on analysis by

Tsujisawa [9] this is adequate to represent

the most important dynamic behavior.

Applying Lagrange's equations to this

configuration the general form resulting is:

where,

and

This

. °°

-,°,Ill+ILl+
(1)

M(0,q) is the inertia matrix,

N(0,b,q,cl) contains nonlinear and

gravity terms,

K is the stiffness matrix, of RALF

0 is the vector of joint angles of SAM

q is the vector of deflection amplitudes

u is the control torque vector.

equation can be expressed as,

= -HlzKq -HnN 1-HIrN2 + Hnu

q - -HzzK q -HzIN I-Hz_N 2 + H21u

(2)

where, [Hij ] is the inverse matrix of matrix
M.

By taking _ = 1/k22 as a perturbation

parameter, we can rearrange equation (2)-as

follows;

0 = -H12z - HIIN I HI2N 2 + H11u (3a)

#z - -KH22z - KH21N 1 KH22N 2 + KH21u

(3b)

where, K = #K, and z - kq.

When we set M = 0, we can obtain the

quasi-steady-state z as,

-i

_.= H22 (-H21N1-H22N2+H21u), (4)

where the over-bars are used for denoting

the terms when tJ = 0. By substituting (4)

into (3-a), we can obtain the slow submodel,

that is, the rigid model of a manipulator as,

= + u) (5)

To derive the fast submodel, we assume that

the slow variables 0, are fixed during the fast

transient. By introducing the fast time scale,

we can obtain the fast submodel as,

r. t/G-"

r/" KH22r/ + KH21u f (6)

where, r/= z- z

o

Uf--Uw-U

and" indicates diferentiation with respect to

7".

In order to guarantee that the fast

variables z follow the slow manifold, we

need to use a composite control law [4] as,



u = +

In this research, a nonlinear feedback

control law like the computed torque

method is used for controlling the slow

motion. A pole assignment control

algorithm is used for the fast motion. If the
number of actuators and modes included in

modeling are the same enabling the

neceesary matrix inverse, the slow control

law, u, and the fast control law, up are given
as

where, A1, A2 and A3 are diagonal gain

matrices and the subscript s denotes the

slow motion control, and f denotes the fast

motion.

II. DISCUSSION

The application of the two time scale

control has verified the simplification

•possible with this approach. The two
control laws must each control a 4th order

system as opposed to one 8th order system.

This will make real time implementation

easier.

The advantage of simplification is

obtained at the price of limited

performance. The fast system variables r/
are controlled relative to the slow manifold

Z. Thus when r/=0 the deflections q might

not be zero.

Based on preliminary studies of a one

link flexible arm with a one link rigid arm

on its tip, we expect effective vibration

dampening. When compared to joint

motions of the flexible arm, several other

parameters must be considered, such as the

nominal joint angles, initial conditions, and

which mode is to be damped.

While the fast control algorithm

described above requires equal numbers of

actuators and modes, this is not a general

limitation for other possible algorithms.

Further work on these issues is

underway.
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Figure I: The system of interest: RALF
(Robotic Arm, Large and Flegible) carrying

SAM (Small Articulated Manipulator).



Submitted to 1990 CISMOTFT.MM Symposium on Theory and Practice of

Robotics and Manipulators, Cracow, Poland, July 2-6, 1990.

Robot Vibration Control Using Inertial

Damping Forces

Wayne J. Book
Soo-Han Lee

School of Mechanical Engineering
Georgia Institute of Technology

Atlanta, GA 30332, U.S.A.
Tel. 404-894-3247

Lightweight manipulators are subject to vibrations that reduce their

performance. Active means to damp these vibrations are of significant

research interest. Joint actuators of the arm can perform this task very
effectively as has been shown in theory and experiment by several researchers.

These actuators must respond at the bandwidth of the vibration they are to

damp. If the manipulator and/or the payload is large the actuators are

correspondingly large. The bandwidth requirement is a serious impediment to

practical implementation of the active vibration damping scheme. An
alternative under exploration is vibration damping through inertial forces.

Inertial forces are commonly used for active vibration control in large space

structures. Reaction wheels and linear momentum exchange devices are placed

on the structure specifically for this purpose. This paper will explore the

use of the existing degrees of freedom at the end of a large arm to damp
vibrations during gross motions when they are not otherwise employed. These

smaller actuators can have a higher bandwidth and more precise control than

the joints used to reconfigure the arm. The smaller actuators could be

actuating the wrist of a manipulator in a traditional industrial manipulator.

The system used in the analysis and experiments of this paper is actually two

arms. (See Figure 1.) The large arm is designated RALF (Robotic Arm Large
and Flexible). It consists of two, 3 meter beams and two rotary joints

actuated by hydraulic cylinders and controlled by a MicroVAX II computer. The

moving structure weighs only 32 kg (70 pounds) and has natural frequencies
under 9 Hz when no payload is present. A small arm with three electrically

actuated degrees of freedom has two links of about .5 meter each. Each joint

is controlled by a Motorola 68000 microprocessor supervise by a common IBM PC.
It is designated SAM (Small Articulated Manipulator). Its links are

essentially rigid. SAM is designed to be carried by RALF. These robots are

test beds for control algorithms and operating strategies appropriate to
flexible arms. In this paper we consider the use of SAM to generate inertial

forces for damping the vibrations of RALF. Motions in a plane are our initial
consideration.

The effectiveness of the inertial forces in damping vibrations depend on the

nominal configuration of both arms. At this time we are not considering the

problem of moving the small arm to the configuration that will be required for
the manipulator task. As a useful strategy the center of mass of the small

arm and its motion are moved as required for inertial force generation on the

tip of the large arm. The moments produced are of less significance on the
motion of the large arm. The large arm is modeled by an assumed modes method.



This model can be linearlzed when the motions'are relatively slow. The mode

shapes of the arm change when the arm changes configuration, and this is

accounted for in determining the appropriate small arm nominal configuration

ang the appropriate small arm nominal configuration
andmtions.

SAM is significantly affected by the nonlinear terms in the dynamics. Its
controller must allow for these terms. The control explored strives to

maintain the simplicity of a decoupled motion. In other words, the large and

small arm are controlled separately, not as a single kinematic chain.

Concluslons on the most effective configurations for SAM for various
configurations of RALF are presented. The effectiveness inertial forces in
active damping is compared to the use of the large arm's Joints for active

damping. Inertial forces do not appear to be as effective as joint motion for
the test system. The approach is relevant to cases where the joint control is

not possible, however. The approach seems particularly relevant to space
manipulators proposed for the space station, where a small manipulator is

carried by a "space crane." It also holds advantages for use in combination
with a bracing strategy, since after bracing the small arm can be moved to

perform its manipulation task without significantly exciting the large arm's
vibration.

FIGURE 1. The Test Case: Robotic Arm Large and Flexible (RALF) and Small
Articulated Manipulator (SAM);"

"2-
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Abstract

The performance limitations of manipulators under joint variable feedback control

are studied as function of the mechanical flexibility inherent in the manipulator struc-

ture. A finite dimensional time domain dynamic model of a two link, two joint planar

manipulator is used in the study. Emphasis is placed on determining the limitations

of control algorithms that use only joint variable feedback information in calculations of

control decision, since most motion control systems in practice are of this kind. Both

fine and gross motion cases are studied. Fine motion results agree well with previously

reported results in the literature, and are also helpful in explaining the performance

limitations in fast gross motions.
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: elastic deformation of link i, at location zi and time t.

: vector of joint angles ([01, 82 ])

: vector of flexible mode generalized coordinates

: vector of effective torque at joints

: plant full state vector

: reference model state vector ( [ 0_,0_']ae,_,,d )

:
: commanded input vector to the reference model

: error state vector (r,,,, -_ )

: filtered error state

: output vector of the nonlinear time varying feedback block of the standard

hyperstability problem

: ij component of joint angle feedback gain matrix

: ij component joint velocity feedback gain matrix

: nominal joint variable (position and velocity) feedback gain matrix

: nominal feedforward gain matrix

: adaptive state feedback gain matrix

: adaptive feedforward gain matrix

: positive scalar constants of integral gain adaptation algorithm.

: the lowest natural frequency of the arm with all joints clamped.

: closed loop bandwidth of the feedback controlled flexible arm

: closed loop bandwidth of the feedback controlled equivalent rigid arm

: desired motion bandwidth (the natural frequency of the reference model which

has step command input)

: damping ratio of mode i

: n dimensional real vector space
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LT!

NLTV

FFB

FBB
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CLS

: belongs to symbol

: there exists symbol

: dynamic systems defined by Popov class

: approaches symbol

: linear time invariant

: nonlinear time varying

: feedforward block

: feedback block

: adaptive model following control

: closed loop system
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I. Introduction

Robotic manipulators have compliance that axe inherent in their links and joints.

The compliance becomes significant especially at high manipulation speeds and/or large

payload conditions. Today, there is an increasing demand for manipulators with high

speed, precision and payload handling capabilities as a result of higher productivity

needs. Hence, the manipulator flexibility and control of it has become an important

problem. In some cases, structural flexibility in manipulators may be desirable. For

instance, a manipulator cleaning delicate surfaces, handling household jobs, is desired to

have significant structural flexibility so that errors in position control do not generate

large forces that may damage the surface, or become dangerous for the people in the

house in case of accidents.

Regardless of the reason that the flexibility becomes significant (i.e. due to high

speeds, large payloads, inherently very soft links for household services), precision con-

trol of the manipulator tip is necessary to accomplish the desired task. Manipulator

motions may be divided into two groups in terms of the range of motion: 1. line mo-

tion, 2. gross motion. In fine motion, the manipulator tip moves in a small region

of worksp_e. Despite high closed loop bandwidth, absolute velocities do not become

very large since the motion occurs in a small region. Therefore, the nonlinear dynamic

forces (coriolis and centrifugal) are generally negligible. In gross motion, the manipu-

lator tip makes large rotational maneuvers in workspace. The large rotations of joints

relative to each other are the main source of complicated nonlinear dynamic coupling

between the generalized coordinates [Shabana and Wehage 83, Sunada and Dubowsky

82]. Absolute velocities may become large during the fast, large maneuvers to the point

that the nonlinear dynamic forces become very dominant [Luh 83].



Cetinkunt _J Book _9

1.1 Review of the State of Art

The majority of work in control of robotic manipulators ignores the flexibility of

the manipulator in the anMysis. Therefore, no reference is made to the effect a_nd/or

limitations of flexibility in control system performance [Dubowsky and DesForges 78,

Balestrino et. al. 87, Hsia 86, Craig et. al. 86, Slotine 87]. In order to avoid the flexibility

problem, very conservative controller design rules are suggested [Paul 83, Luh 83]. At a

time when researchers are striving to design high performance controllers, it is logical to

explicitly study the limitations imposed by the manipulator flexibility, instead of taking

conservative design measures. Closed loop bandwidth limitations of non-a_laptive joint

variable feedback controllers were studied explicitly as function of arm flexibility in fine

motion [Book et. al. 75]. However, the results can not be generalized to fast gross

motions where dynamic nonlinear effects become significant. The dynamics of flexible

manipulators are described by infinite dimensional mathematical models due to their

distributed flexibility [Book 84, Low and Vidyasagar 87], yet the controllers are designed

based on truncated finite dimensional models. The discrepancy between the designed

performance and the actual performance achieved as a result of model truncation for the

purpose of controller design is studied and an iterative design procedure is suggested in

[Book and Majette 85].

The class of control algorithms studied here, that is algorithms that use only joint

variable measurements, are particularly important since most industrial robots and mech-

anisms are controlled that way. Tip position measurements [Cannon and Schmitz 84,

Shung and Vidyasagar 87], strain measurements along the flexible link [Hastings and

Book 86], tip acceleration measurements [Kotnic, Yuckovitch, {_zgfiner 88] are examples

of attempts to design so called noncolocated controllers that would achieve performance

beyond the traditional limitations of colocated controllers. A major problem associated

with noncolocated control is the destabilizing effect of observation and control spillover
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[Gevarter 69, Balas 78]. Independent joint variable control of multi-link manipulators,

that is each joint control action is based on the local measurement information of that

joint only (colocated control), does not have this problem since spillover never drives the

system unstable in colocated control [Gev_ter 69]. This conclusion, however, cannot

be extended to the class of joint variable controllers where intra-joint feedback is used

to achieve decoupled joint response [Book et. al. 75].

In short, joint variable feedback controllers require fewer sensors, have better stabil-

ity robustness against spillover and unmodelled dynamics, and widely used in practice.

Therefore, it is worthwhile to study their potential use in fine and gross motion control

of flexible manipulators, even though their upper limit of closed loop bandwidth is in

general considerably smaller than that of noncolocated controllers. In particular, the

adaptive joint variable feedback controllers should be analyzed since they receive increas-

ing interest due to the adaptability of feedback gains as a function of the changing task

conditions.

L2 Characterization of the Problem and Definitions

The signficance of structural flexibility in motion control of a manipulator is a func-

tion of the task conditions. Any given manipulator can be moved slowly enough that

the structural flexibility will not cause any significant deviation from the intended mo-

tion. Similarly, it can also be moved fast enough such that the structural flexibility will

become very apparent in the response of the manipulator (presuming the availability of

actuators that can deliver sufficiently high torque/force levels).

Physically, every robotic manipulator has structural flexibility. The question of

whether the controller needs to be concerned with it or not varies from task to task.

At this point, one must quantify the term slow enough motions such that flexibility

does not present any problem, as well as the fast enough motions where the fle:dbility
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does presenta problem.

The speed ofmotion isquantifiedas slowor fast(low,medium, or high speed)with

respecttothe structuralflexibilityofa manipulatorusingthe loweststructuralfrequency

ofthe manipulatorwhen alljointsare locked(w't)as the reference.

[Book et.ai.75] quantifiedthe speed of a given finemotion relativeto the struc-

turalflexibilityusing the ratioof necessaryclosedloop bandwidth (wb_) to the lowest

structuralfrequencyof the system (wb,,/w_t).Given a manipulator,and a desiredfine

motion,one can easilypredictwhether the structuralflexibilitywillbe significantor not

during thatmotion usingthe ratioof(wbw/w_).

In fastgrossmotion, where dynamic nonlinearitiesaxe dominant due to high joint

speedsand largeangular rotations,the notionof bandwidth isno longera welldefined

characteristicofthe controlsystem. However,inthe contextofmodel referencecontrol,

the speed ofgrossmotion may be quantifiedusingthe bandwidth ofthe referencemodel,

(w,_),with a stepinput. Here,the (w,_/w,t)ratioisproposed to quantifythe speed of

grossmotions relativeto the structuralflexibility.

The essentialdifferencebetween thiswork and other works in controlof singlelink

flexiblearm isthat,in caseof multiplejoints(two jointtwo linkexample used in this

study) thereare many nonlinearcouplingsbetween the generalizedcoordinatesof dif-

ferentlinksas a resultoflargeangularrotationsofjoints. Most of thesecouplingsdo

not existinsinglelinkcase. [Book et.al.75,Book and Majette 85]studiedthe control

aspectsof two linktwo jointflexiblemanipulatorexample in finemotion usinginfinite

dimensiona/linearfrequencydomain models basedon transfermatrices. Here both fine

and grossmotion controlaspectsare studiedusing a finitedimensionalnonlineartime

domain model.

The remainder of thispaper isorganizedas follows: The mathematical model of
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a two-link,two jointflexiblemanipulator isbrieflydescribedin SectionIf.Fine and

grossmotion controlunder jointvariablefeedbackcontrollersare analyzed in Section

Ill,resultsaxe discussedin SectionIV. The conclusionsof thiswork are summarized

in SectionV. Design detailsof the proposed adaptivemodel followingcontrollerare

presentedin the Appendix.

II.Dynamic Model of a Two Link FlexibleManipulator

Symbolic derivationdetailsofdynamic modelsforflexiblemanipulatorsaredescribed

in [Cetinkunt and Book 89]. The differencesbetween differentLagrangian-assumed

modes based modeling approaches come from the kinematicdescriptions. Here the

kinematic description will be summarized, and derivation using Lagrangian-assumed

modes approach will be skipped since it is a well known standard procedure.

Let (OoXo Yo) be the inertial coordinate frame (Fig. 1). Assign two coordinates

for each flexible link; one is fixed to the base (e.g. O1 X1 Y1), the other is fixed to the tip

of the link (e.g. 02 X_ YI'). In order to describe the absolute position of any differential

element on the links, let 01 and 0_ describe the joint angles, and wl(zl, t), w2(z2, t)

describe the elastic deformations of links from the undeformed positions.

The spatial variable dependence of the deformation coordinates leads to a math-

ematical dynamic model that is of partial integro-differential equation form [Low and

Vidyasagar 87]. In order to simplify the model, the deformation coordinates are approx-

imated by a finite series which consists of shape functions multiplied by time dependent

generalized coordinates.

w_(xi,t) = :_--:_(z_)_ii(t) ; i = 1, 2
j=t

j=l .... ,n_

where m is the number of mode shapes considered in the approximation in describing



theelasticdeformationof link i.

This results in a finite order dynamic model.
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Since the spatial variable dependence

is already specified through the shape functions, the mathematical model is of ordinary

differential equation form. Let us order the generalized coordinates as q_= [0_,_, where

_8= [01,02], the joint coordinates, and 6 = [(611, ..., 61m)], (621,..., 6_,_)], the deformation

coordinates. Having uniquely established the kinematic description of the manipulator,

the derivation steps of the equations of motion via Lagrangian formulation is straight for-

ward [Book 84, Cetinkunt and Book 89]. The dynamic model of a flexible manipulator

may be expressed in the form

rnTl(o, ,, ml(8, ,)] [_1+ [_]+ [[/_]

where mr( 0, 8), mrl( O, 8), rnl( O, 6) are partitioned elements of generalized inertia matrix

which is always positive definite, and symmetric, f_r(0,_, 8, 6), [.1(8, b, 8, _) are coriolis

and centrifugal terms which are quadratic in the generalized coordinate velocities (O_',6__);

g_,(#, 6), g_l( 0, 6) are gravitational terms; and [K] is the structural stiffness matrix associ-

ated with arm flexibility and mode shape functions, u represents the effective torque (or

force) vector at the joints. For the two link arm example considered here O_= In1, 02],

and since two mode shapes are used per link, 6_= [(6u, 612), (8_1, 62_)].

The equation (2.1) is a highly nonlinear and coupled ordinary differential equation

set. This makes the controller synthesis and design a problem difficult. Furthermore,

experiments [Hastings and Book 86] and analytical studies [Cetinkunt and Yu 89] indi-

cates that the mode shapes of the links quickly converge to the mode shapes of clamped-

base beam under joint variable feedback control for even low values of feedback gains of

interest. All mode shapes of a clamped-base beam have zero slope at the base, there-

fore B,, = 0 for the dynamics of flexible manipulators under feedback control. That

means the joint variable controller effects the flexible variables through coupling from



joint variables,but not directly throughthe input matrix.

rigid manipulator,in general,hastheform

[M(O)]O_+f_(O, O) +g_(O) =u
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The dynamic model of a

(2.2)

The structural difference between the dynamics of rigid and flexible manipulator is dis-

played by equations (2.1) and (2.2).

III. Fine and Gross Motion Control with Joint Variable Feedback

The question of when the arm flexibility becomes significant and what limitations it

imposes on the performance of joint variable controllers are studied first in fine motion.

The results are valid only when the dynamic nonlinearities are negligible. In order to

determine the effect of dynamic nonlinearities, the linear and nonlinear control algorithms

are simulated on the nonlinear model (2.1).

III. 1 Fine Motion Control

The nonlinear model (2.1) is linearized about a nominal configuration, z_. =

[0_,6__,_, _ = [_o.,i._l, 0, 0, 0_]and nominal input U.o._,._l which compensates for the nom-

inal gravitational loading. Since nonlinear coriolis and centrifugal terms are quadratic

in _0,_, they have no contribution to the model that is obtained by linearizing about

a nominal configuration where nominal values of velocities are zero (_ = _ = 0). Let

0 = _o.,m=t + AS_, _ = _o,.i.o_ + A_, and u = _o,,,i.=_ + Au_, then the linear dynamic

model about the nominal configuration Z_.o._i._j = [0__o.,,._l, 0_,0__,0] is given by (3.1),

0gs/00

MGI! K=II

(3A)

In compact form, let Az_ = [A__, A6, A_0, A_, the linear dynamic model about the given



nominal configuration can be expressed as,
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where

A _ = AA x_+ BAu_ (3.2)

[0A= _M_ltlg_ll , B= M_/I _ (3.3)

The closed loop eigenstructure of the linear model under linear joint variable feedback

controllers is studied as a function the feedback gains. The linear joint variable feedback

control has the general form

For independent joint control;

For decoupled joint control;

= -[K/A A0_--[C/j] (3.4)

8

[K/jl = rrb( 0,,,,,,,,l, 0) diag{kii}

[C/j] = m,( O,_o,,_i,_al,O) diag{cii}

Independent joint control results are presented here in order to compare with the previ-

ously reported ones. Position and velocity feedback gains of joint 1, (k11, cll), are set

to very high values in order to force the joint 1 behave like a damped base. The locus

of closed loop eigenvalues are studied as a function of joint 2 feedback gains, k22, c2._.

The finite dimensional linear model should be able to predict at least the dominant be-

havior of the closed loop dynamics of the infinite dimensional actual system, despite the

errors introduced due to truncated dynamics. Otherwise the truncated finite dimen-

sional model would not be of any value.

By comparing the root locus behavior of a given flexible manipulator with that of

an equivalent rigid manipulator, the conditions at which flexibility becomes significant
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and the range of conditions where the flexibility can be ignored can be determined

and compared with reported results. The study of dominant behavior of closed loop

eigenvalues will determine the best possible performance in fine motion.

III.2 Gross Motion - Adaptive Model Following Control

The fundamental challenge in the control of industrial and space robots is to provide

high speed, high precision motions despite large variations in payload, and other task

conditions. Extensive research in the past decade has shown that adaptive control

methods are potentially more promising to meet that change than non-adaptive control

methods. It is desirable to have an adaptive controller that would achieve the following

performance criteria:

1. Good transient and steady state tracking of desired motion trajectory.

2. High speed and precision manipulation in gross and fine motion (high closed loop

bandwidth) relative to the structural flexibility.

3. Good performance and stability robustness against unknown task condition varia-

tions.

An adaptive model following control (AMFC) algorithm is developed based on the

hyperstablity approach [Cetinkunt 87]. The design details axe presented in the Ap-

pendix in order to keep the essential points of this paper in focus. Let us call _ = [0, _.

The adaptive control algorithm is given by, (Fig. 2)

uu.= -Kp,__¢ + K,,u_,_ + AKp(e_, t)z__ + Ag,(e_., t)u__ (3.5)

where

K.. = m.(e, [c,,l] (3 a)

Ku, -- m,( O, 6,,) (3.6.b)

/o'
9



//z_K. = p.i m.( 8o, &,,) Eu__rdr (3.6.d)

[kii], and [c.] are the reference model dynamic components chosen by the designer, _t

is the static deflection values of flexible modes. Here, the reference model is chosen as

a decoupled linear system of the form

(3.7)

The response of the reference model, #_,,(t), to the commanded input, urn(t), is the desired

joint response. The reference model dynamics affects the control through equations

(3.6.a, c, d). Using 8,, in the control algorithm does not require real-time feedback

information about the flexible states. Therefore, the controller is still a joint variable

feedback control algorithm. The use of _, as opposed to 0_(zero) for the flexible modes

is more accurate and improves the decoupled control of the flexible manipulator without

imposing arty significant implementation difficulty. The _ is the filtered tracking error e__

(Fig. 2). pp_ and p_i are arbitrary positive scalar adaptive controller design parameters

effecting the convergence rate of the adaptive control system and the transient response

of the closed loop system.

The specific dynamic characteristics of manipulators are utilized in the general con-

text of hyperstability based design so that the resultant controller is particularly suitable

in control of manipulators exploiting their specific dynamic characteristics as opposed to

treating them as a black box dynamic system. .Following that philosophy, the general-

ized inertia matrix plays a significant role in the adaptation algorithm (eqn. 3.6.c-d), and

in the nominal control (eqn. 3.6.a-d). First, the feedback gains are naturally adapted in

a manner to preserve the decoupled joint control. Secondly, arbitrary parameter selec-

tion that is generally required in Lyapunov and hyperstability based designs, is reduced

to the selection of only two scalar parameters no matter how many joints the manipulator

has, as opposed to the usual requirement for selection of two arbitrary positive definite

10
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matrices[Hsia87]. Noticethatthe gain adaptationisofintegraltype (eqn. 3.6.c-d),

which isa commonly used adaptationtype inmodel referenceadaptivecontrol.

IV. Results and Discussion

IV.I Fine Motion Control Results and Discussion

Let w_, be the lowest structural frequency of the manipulator when both joints

are clamped and extended ( kll and k_2 ---* o¢, cll and c2: = 0, Fig. 3). Consider

an equivalent rigid manipulator with the same inertial and geometric properties of the

flexible manipulator. The rigid system with first joint clamped (kll ---*co) will be a

second order mass-spring system with feedback gains (k22, c_2 ¢ 0). Let w,1 be the

undamped natural frequency of the rigid system for a set of feedback gains k._2 and c22.

In fine motion, the w,l/w_t ratio determines the significance of flexibility and the

dominant behavior of the closed loop system. In the rigid manipulator case, it is pos-

sible to achieve arbitrarily large closed loop bandwidth by increasing k_2 and c:2, for

w,1 = _/k_/( Jo2)_/1 , and damping ratio _r_ = c_2/(2.0 x _/( Jo2)e/! x k22), where ( Jo2)e/f

is the effective moment of inertia of link 2 and payload about joint 2 axis of rotation.

However, when the same controller is applied to the flexibile manipulator, the closed

loop bandwidth, wbw will definitely be smaller than w_,, for the fact that as 1c2: -- co,

[ w_,, [ -- w_, with very little damping ratio (Fig. 3). If the servo stiffness is low relative

to the structural flexibility, that is wrl/w_, << 1/2, the locus of closed loop eigenvalues

is indistinguishable from those of rigid case as c_ increases. However, if the velocity

feedback gain, c::, is further increased to large values, the effective result is to stiffen

the joint. One dominant eigenvalue meets with another on the negative real axis, and

breaks away from the real axis converging to the w_, magnitude on the imaginary axis

as c_2 increases (Fig. 3, curve a, Fig. 4.a). In the rigid case, this phenomenon does

not exist for any value of feedback gains. The root locus analysis of fine motion is

11
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done as function of c2_ for many other values of w_l/w;t. The basic outcome of this

analysis is illustrated in (Fig. 3 and 4, only dominant regions of root locus are shown in

the figures). It is seen from (Fig. 4.b-c) that above certain values of w_l/w;t ratio, the

dominant eigenvalues are no longer able to reach the real axis. Physically that means,

if joint position control is too stiff relative to the arm flexibility, it is not possible to

provide well damped dominant modes no matter how large the velocity feedback gain is.

For a given manipulator and payload, wit is determined by the geometric, inertial

and structural flexibility properties of the manipulator. If a joint variable controller

attempts closed loop bandwidth larger than (1/2)w_t , then the flexibility of the manip-

ulator will be a significant factor during the fine motions. Otherwise, the structural

flexibility may be ignored, and controller may be designed based on rigid manipulator

assumptions (Fig. 3, curve a, Fig. 4.a). The best performance of a joint variable feed-

back controller is defined here as the highest possible closed loop bandwidth (that is

the largest dominant eigenvalue magnitudes with sufficient damping ratios; i.e. 0.707 or

more). As shown in figure 4.b, approximately (2/3)wit closed loop bandwidth can be

achieved by appropriate choice of feedback gains. It is equally important, however, to

note that the dominant eigenvalues are very sensitive to the variations in feedback gains

in the best performance region (Fig. 4.b, locations 8,9,10, between each point the velocity

feedback gain is incremented by a constant amount). In practice it may not be easy to

realize that performance due to modeling errors.

The results concerning the effects of structural flexibility in closed loop performance

agree very well with the previously reported results based on infinite dimensional fre-

quency domain results [Book et. al. 75, Book and Majette 85].

12
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IV.2 Gross Motion Control Results and Discussion

In order to see the effect of dynamic nonlinearities, the closed loop system is sim-

ulated for two classes of motions: first, slow motions where nonlinear forces are small

(Fig. 5a-b, curves (a)), and secondly, fast motions where nonlinear forces are signifi-

cantly larger or of same magnitude with the other dynamic forces (Fig. 5a-b, curves

(b)).

Fig. 6 shows the response of the manipulator with adaptive controller to the desired

slow motion. Two different adaptive control results are shown for slow and fast adap-

tion, refering to small and large values of the adaption parameters plvi and p_i. The

appropriate values for these parameters are found by trial and error. This motion has

two properties: 1. dynamic nonlinearities are not significantly large (Fig. 5, curve (a)),

2. the bandwidth of the desired motion is about 1/4 of the lowest natural frequency

of the arm. The bandwidth of the desired motion, w,,i, is defined as the bandwidth

of the reference model which generates the desired motion in response to a step input

command (Fig. 2).

Since the adaptive controller essentially tries to make the closed loop dynamic be-

havior match to that of the reference model, the function of w,,, in the nonlinear analysis

content is similar to the function of the w_ in the linear analysis. Clearly, figures 6.a-e

show that flexibility of the arm is not significant in terms of joint tracking and setting time

of flexible vibrations at the end of motion, which is in agreement with the linear analysis

results. When the same system is simulated for motion (b) where w,_i/wc_l = 1/2 and

nonlinearities axe significant (Fig. 5a-b, curves (b)), the response deteriorates. Persis-

tent, lightly damped oscillations occur in joint and flexible mode variables (Fig. 7.a-e).

The difference between the two simulations (Fig. 6 and 7) is the magnitude of nonlinear

forces (Fig. 5, curve (a) and (b)). When the nonlinear forces are significant compared

13
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to other dynamic forces, the performance is unacceptably poor. Therefore, the nonlin-

ear effects during fast gross motions impose further restrictions on the performance of

adaptive joint variable feedback controners with integral gain adaptation.

The mechanism through which the nonlinear forces affects the joint controller per-

formance can be desribed as follows with the help of the insights gained from the fine

motion analysis. If the nonlinearities are significant, the adaptive controller automati-

ca/ly adjusts its feedback gains through integral adaptation (eqn. 4.6.c-d) to compensate

for the tracking errors caused by the nonlinear forces. Increasing the controller gains

through the adaptation rule eventually leads to very stiff joints. Linear analysis has

shown that very high joint stiffness relative to the flexibility of a given arm results in

very lightly damped dominant modes (Fig.3 curve (c), Fig.4.c). Thus, lightly damped

dominant modes are generated by the adaptive controller, while it is trying to compen-

sate for the joint tracking errors caused by the large nonline_ forces. It is important

to note that this mechanism is valid for the class of adaptive controllers that use integral

type gain adaptation.

14
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V. Conclusion

In fine and slow gross motions where coriolis and centrifugal nonlinear forces are

negligible, a given manipulator can be considered as rigid if the controller does not

attempt to reach closed loop bandwidth more than 1/2 of the lowest structural frequency

of the manipulator when all joints axe locked (w_t). In fine motion, the best possible

performance of joint variable feedback controllers may be up to 2/3 of w,_ with damping

ratios greater than 0.707. However, it is equally important to note that the sensitivity

of the dominant eigenvalues to the variations of joint feedback gains are highest in the

best performance region (Fig. 4.b, locations 8,9,10). Therefore, it may be difficult to

achieve (2/3) wlt closed loop bandwidth in a practical situation due to the modeling

errors. The fine motion analysis results obtained here based on a finite dimensional

time domain model agree very well with the previously reported results based on infinite

dimensional frequency domain models [Book et al. 75, Book and Majette 85].

The performance of an adaptive controller with integral gain adaptation is Mso shown

to be limited by the structural flexibility. While the adaptation algorithm increases the

feedback gains to provide good tracking in joint variables against the large nonlinear

forces (Fig. 5, curve b), the same increase in feedback gains will result in very stiff

joint hence persistent structural vibrations. Through that mechanism, the manipulator

flexibility presents a potential problem and limitations to the utilization of adaptive

controllers with integral type gain adaptation.

15
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Appendix

A. 1 AMFC-Hyperstability Based Design

The basic idea of AMFC comes from the linear perfect model following control

(LPMFC) problem of [Erzberger 69]. AMFC attempts to asymptotically realize the

same objective of LPMFC for time varing systems.

Let the reference model be

= Amx__ + B,nu__ (A.1)

and the plant dynamics be in time varing (quasi-linear) form

= Ap(_%,t)_%+ Bp( , t)up (A.2)

with the control algorithm of the form,

up = -Kpm_p -t- guu__m+ g,_x__ (A.3)

Clearly, as the plant dynamics (Ap(._, t), Bp(_, t)) varies, the feedback gains must also

vary in order to match the dynamics of the plant to that of the reference model.

There are two basic assumptions associated with the current AMFC designs [Landau

1979]:

1. There exist Kp, K_, I(,,_ for every (Ap(4, t), Bp(_,, t)) and the given (A,_, B_)

so that at any instant LPMFC conditions of Erzberger are satisfied.

2. Variations of Ap(x_p, t), Bp(.%, t) are slower than the speed of adaptation.

Assumption # 1 is an expected existence condition. AMFC attempts to converge

to the ideally correct values of feedback gains through adaptation as the plant dynamics

vary. Existence of such limit values is the first requirement for the convergence, let

alone whether the adaptation algorithm will converge or not.

Assumption _ 2 is commonly made in most AMFC design methods. During adap-
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tation intervals,it is assumed that time invariant approximations of plant model is

accurate enough. Therefore, robot motions must be slow compared to the adaptation

speed of adaptive controller. Let us look at the origin of this assumption by going

through the derivation steps of hyperstability based AMFC design.

Letting K,_ = 0, without loss of generality [Landau 79],the error dynamics isdescribed

by

e_'= Ame+ [Am - A,(x_p, t) + Bp(_, t) Kp]zp
(A .4)

+ [Bin - Bp(_, t)g_]_

For e_.(t) ---* 0 as t ---* oo for all x_p, u_u_,,that belong to a piecewise continuous, bounded

class of functions, the coefficients of z_p, u__ must be zero. By assumption # 1, there

exist K_, K_ such that

Ap( x_p, t) - A,_ = Bp( x_p, t) K_ (A.5.a)

B,_ = Bp(x__p, t)g_ (A.5.b)

The goal is to develop adaptive control algorithms for Kp, K,, such that Kp, K_ converge

to K_, K_. Convergence must be fast enough for the assumption # 2 to hold.

Let the feedback g_ns be

Kp = Kpn - AKp( e_, t) (A.6.a)

Ku - K_n + AK,(e__, t) (A.6.b)

where Kp,,, K.,, are nominal, and AKp, AK,, are adaptive feedback gain matrices. Fol-

lowing the standard steps of hyperstability based design [Landau 79], it can be shown

that the equivalent hyperstable closed loop system representation of the error dynamics

can be expressed as (Fig. A.1)

e_'= Ame_+ Bp(__,,t) z I (A.7.a)

v_= De_ (A.Z.b)
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, pm

z__= -z 1 = [ Kp - Kp,_ + AKp] x_p + [K.. + AK. - K.] u,_ (A.7.c)

where D is determined by using Kalman-Yakubovich-Popov lemma. In order to guar-

entee the hyperstability of the closed loop system (CLS), the AKp, AK. selection as

follows is sufficient (not necessary):

i'AKp(e__,t) = ¢1(__,t, _-)a_-+ ¢2(__, t)+ AK_(0) (A.S.a)

AK,( e_.,t) = ¢1(_, t, ,')d_" + ¢2(,,, t) + AK,(0) (A.S.b)

where the most general conditions on ¢1, ¢_, ¢1, ¢2 are discussed in [Landau 79], and

more specific forms are discussed in section A.2. AKp(O), AK_(0) can be chosen as

zeros without loss of generality since any nonzero values of them can be included in Kp,,

K,,_ nominal gains. Substituting (A.8) into (A.7.c)

Z'z_= -_1 =[ ¢l(v_,t, r)dr+¢2(v_,t)+AK_]x_p

(A.9)

i'+[ ¢l(v_,t,r)a_-+¢2(__,t)+±K_]_

where

AK ° = K_ - Kp,_ (A.lO.a)

AK ° = -K_ + Kun (A.10.b)

The hyperstability of the feedback block (hence the CLS using Kalman-Yakubovich-

Popov lemma) is proven for AK °, AK ° constant case. That is where the assumption

# 2 comes from.

AK °, AK ° constant requirement implies that ( K_ - Kp,), and ( K_ - K_,) are con-

stants. If Kp,, K,, are chosen to be constant nominal gains, then K_, K_ must be

constant at least during the adaptation intervals. From eqn. (A.5), this implies that

(Ap(z__p, t), Be(x_ P , t)) must be constant during the adaptation process. Equivalently,
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(Ap(_, t), Bp(xp, t)) must vary slower than the speed of adaptation (which is the as-

sumption # 2).

Notice that the condition imposed by the hyperstability is not that K_, K_ should be

constant,but (K_ -Kp,,),and (K; -K_.). Ifnominal feedbackgainsarenot constant,

but somewhat betterin keepingthe planttrackthe referencemodel,then assumption #

2 would not have been so restrictive.Choosing variableKp_, K_,,nominal gainsbased

on the decoupledjointcontrolalgorithm[Whitney 72] where generalizedinertiamatrix

plays a significant role, assumption #2 may be relaxed as follows:

The previous assumption # 2 was:

The difference between the reference model and the closed loop plant

dynaznics under constant linear nominal control should vary slower

than the speed of adaptation.

The new assumption # 2 is:

The difference between the reference model and the closed loop plant

dynamics under variable nonlinear nominal control should vary slower

than the speed of adaptation.

A.2 Generalized Inertia Matrix Based AMFC:

Application to Flexible manipulators

Consider the flexible manipulator model

m.(e,6)b= __-Ira./i+ L +_1

m.(e,6)b= __.+[m.si+L +(_ -g)]

22
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where _ is gravity compensation (feedforward). During the gross motion, nonlinear

terms and coupling from the flexible modes to the joint variable dynamics are treated as

a disturbance and to be ta_ken care of by the closed loop system robustness.

Under the influence of a gravitational field, a flexible arm will deflect. Designing a

control system which uses the static deflections as the nominal value for flexible states

as opposed to zero would be more accurate.

Let the desired reference model be

a_d the control law

_J = -At
(A.15)

o

up -" -Kp._, + Kuu,n + Kmz m

(A.16)

= -gpn_ + g..u__ + agp(e_., t)_, + AK.(_, t)___

Nominal control Adaptation algorithm control action

The nominal control can be chosen in the form (as used by the computed torque method),

[Luh el. al. 80, Cetinkunt 87].

Upn= '_r(O_,_t) _ + _r( O,L,) [[cii-- A,]_ + [k,, - Ao]_ + [ki,]0o]
(A.17)

- o, [tc,,le_+tk.lo_]

The nominal gains for the adaptive model following control algorithm based on the

generalized inertia matrix is given by

K,,, = rh,(0_, 5_.,t) (A.18.a)

gpn = rhr(0_, _,)[[ k,l, [c,]] (A.lS.b)

= mr(O_,5_.)[[ki,] - Aol, [c,,] - A,]] (A.18.c)Kmn

If error dynaznics eigenvalues are equal to those of the reference model, then ki_ = Ao,

cli = A1 =_ Kmn = 0. The rhr(0, 5,t) term in the control algorithm is the key for
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decoupled control of joints. The adaptation algorithm should be designed such that

when added to'the nominal control vector _,, the decoupled nature of the control is

preserved. The adaptive part of the control is:

/0 tAKp -- Fpl v[Gpl_]T dr +

Y

Integral adaptation; A KF,

Fp__[ Gp2_] r

Proportional Adapta_ion;_K,p

(A.19.a)

A K. -- Ful v_[G.l._im] T dr T

Integral adaptatian;_K,,,

F.2 d G,,2__..,]r

Proportional A daptat i on ;A K . _

(A.19.b)

Any positive definite matrix of appropriate dimension for Fpl, Fp_, Gpl, Gp2, Ful, Fu2,

G,1, G,_ would be sufficient (but is not necessary) to guarantee the global asymptotic

stability of the control system with an appropriate output filter. For an n-degree of

freedom system with m number of inputs; Fpl, Fp2, F,1, F.2, G_I, G_2 E R "×"*, and Gpl,

Gp2 E R '*×". There are too many design parameters which can be chosen arbitrarily

from a large aximissible class. Neither the hyperstability based design nor Lyapunov

methods give any guidelines for the selection of the elements of these matrices. As

the system dimension increases, finding appropriate adaptation algorithm parameters

becomes a more serious design problem.

The proposed AMFC design method solves that problem to a great extent. Since

decoupled control calls for the use of the generalized inertia matrix, one should utilize

this fact in the adaptation algorithm to direct the adaptation algorithm in the right di-

rection. The following adaptation algorithm, which uses the generalized inertia matrix,

will guarantee the global asymptotic stability of the closed loop system.

±gp = ±K_ + _gpp

( A.20.a)// T
= Ppithr(L, _t)V__x.T dr + ppprhr(_, _,)v_ X_.p
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AK_, = AK_,i + AKup

<A.20.b)f- p,, g%(0_o, _,)v_u_Tdr+p,p_n,(O__o, L,)v_u_r_

The generalized inertia matrix based AMFC algorithm described by (A.16), (A.18)

and (A.20) has the following advantages over previous algorithms:

1. The use of the generalized inertia matrix immediately solves the magnitude

selection problem of the adaptation algorithm, for it is naturally compatible with

the problem in the sense that it preserves the decoupled joint control.

2. The number of design parameters for integral adaptation is only 2, for integral

plus proportional adaptation is 4, no matter how many degrees of freedom the system

has. Thus the design problem of finding the good adaptation parameters becomes

much simpler.

3. Utilizing the generalized inertia matrix as an integral part of adaptation im-

proves the decoupled response of joint variables.

4 The use of variable nominal gains results in less restrictive conditions on the

applications of AMFC to nonlinear systems.
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Manipulator model parameters Value

Geometric properties of uniform, slender links

(link 1 and 2 are identical)

Length of link i (ii)

Cross-section area of link i (A_)

Cross-section area moment of inertia about z-axis (/_i)

Link material properties (Aluminum)

Mass density (p_)

Young's modulus of elasticity (E_)

Resultant link inertial and structural properties

Mass per unit length (piA_)

Mass of link i

Flexural rigidity of link i (E_I=i)

Lowest natural frequency of the arm (w¢cl)

(both joint are locked, and 02 = 0 )

Joint inertial parameters

Joint 1 and 2 masses (mjl,mj2)

Joint 1 and 2 mass moment of inertia about the joint

center of mass ( Jil, Jj_ )

Payload inertia] properties

Mass (rap)

Mass moment of inertia about the center of mass (Jp)

2.0 Tn.

7.224x10 -4 rn 2

7.6190x10 -9 m 4

2768.8 kg/rn 3

7.0x10 +1° Nt/rn 2

2.0 kg/rn

4.0 kg

533.33 and 5333.33 Nt.m 2

3.59 and 11.35 rad/sec

0.0

0.0

0.0 to 2.0 kg.

0.0
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SYMBOLIC MODELING AND DYNAMIC SIMULATION OF ROBOTIC

MANIPULATORS WITH COMPLIANT LINKS AND JOINTS

SABRI CETINKUNT* and WAYNE J. BOOKt

*Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, IL 60680, U.S.A. and t'l'he
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,

U.S.A.

The explicit, non-rccursive symbolic form of the dynamic model of robotic manipulators with compliant links and
joints are developed based on a Lagrangian-assumed mode of formulation. This form of dynamic model is
suitable for controller synthe_, as well as accurate simulations of robotic applications. The final form of the equations
is organized in a form similar to rigid manipulator equations. This allows one to identify the differenc_ between
rigid and flexible manipulator dynamics explicitly. Therefore, current knowledge on control of rigid manipulators
is likely to he utilized in a maximum way in developing new control algorithms for flexible manipulators.

Computer automated symbolic expansion of the dynamic model equations for any desired manipulator is
accomplished with programs written based on commercial symbolic manipulation programs (SMP, MACSYMA,
REDUCE). A two-link manipulator is used as an example. Computational complexity involved in real-time control,
using the explicit, non-recursive form of equations, is studied on single CPU and multi-CPU parallel computation
processors.

q2_.j

n2i
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NOMENCLATURE q2

jth generalized coordinate asso-
ciated with element 2i q3

number of'generalized coordinates
associated with element 2i m2_ -
total number of links E

jth mode shapes for the deflections
of element 2i in the x2_, Y2_, zzi axes G

directions, respectively. (/x)2i, (ly)2i, (lz)21

homogeneous transformation mat-
fix from coordinate frame 2i to in-
ertial coordinate frame (A_)2_

homogeneous transformation mat- intm
rix from coordinate frame (2i + 1)

to coordinate frame (20 m2,-t
kinetic energy of the system I2t- t

gravitational potential energy
elastic potential energy
spatial variable along element 2i [/]
mass distribution of element
uniform mass distribution value g

generalized coordinates associated m(p,,).(,,,)
with joint angles between links
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generalized coordinates associated
with link flexibilities

generalized coordinates associated
with joint flexibilities

mass of element 2i (link 0
Young's modulus of elasticity of
the material

shear modulus of elasticity
area moment of inertia of element

2i cross section about x,i, Y2i, -72i
axes, respectively.
cross section area of element 2i.

maximum rounded integer, e.g.
/ntm_5.2, 6.3) = 7
mass element 2i- 1 (link 0
inertia tensor of element 2i - I with

respect to a coordinate frame fixed
at its center of mass

generalized inertia matrix of all
joints

gravity vector, [g_, g,, g_, 0] r
generalized mass matrix element

with row index (p, r), and column
index (s, t)

p-1

row index: _ ni + r
i=I

column index: _ n_ + t
i=l
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1. INTRODUCTION

1.1 Motivation for the work

Computer controlled robotic manipulators are very
versatile elements of modern flexible manufacturing

systems. Their versatility stems from two main
characteristics: (1) mechanical reconfigurability, (2)

reprogrammability with the control computer. There
is an increasing demand for the utilization of robotic

manipulators in many manufacturing operations such
as milling grinding drilling, and deburring. Further-

more, manipulators are required to complete their part
of a job in shorter times, in order to reduce the cycle
time and thus improve productivity. This requires

manipulators to move faster and faster.

The compliance of manipulators due to links and
joints becomes a significant factor affecting the

precision of manipulation as the manipulators move
at high speeds and/or interact with large contact forces.
In order to operate within a desired precision range,

the computer control algorithms must account for
previously neglected manipulator compliance. Under-

standing and appropriately accounting for the com-
pliance in control is a prerequisite for the utilization

of manipulators in the forementioned high-perfor-
mance tasks. Therefore, effective means of modeling

the dynamics of manipulators, including the link and
joint compliance, is needed.

In general, there are two different reasons for

mathematical modeling of any dynamic system, and
for that matter, compliant manipulators.
1. Study and simulate a system before it is actually

built. For that purpose, the model should be as
accurate and detailed as possible to closely represent

(model) the actual system, so that the predicted
behavior will be close to the actual behavior of

the real system.

2. Model only the major characteristics of the system
so that it is simple enough to synthesize an
appropriate control algorithm, and implement it in

real-time. Explicit, symbolic form of the flexible
manipulator dynamics presented in this paper offers
important insights to the dynamic characteristics,

which is crucial for the development of an appro-
priate controller.

1.2 Literature review

Dyamics and control studies of flexible manipula-

tors have concentrated on a single joint-single link
example.t-3 The single flexible beam is modeled as a
Bernoulli-Euler beam and infinite dimensional vibra-

tion coordinates are truncated to a finite number of

modal coordinates. Joint flexibility is considered as a

torsional spring coupling the actuator rotor/gear

assembly to the link.
Previous work on the Lagrangian formulation based

dynamic modeling of multi-link flexible manipulators
can be classified into two groups:
I. Lagrangian--finite element based methods,

2. Lagrangian--assumed modes based methods.
The small vibration dynamic models of flexible

mechanisms and manipulators are developed about
known nominal joint variable trajectories.* The coupl-

ing effects of deformation coordinates on the joint
motions were neglected. This assumption is removed
in Ref. 5. Static deflection modes are included in the

model in addition to dynamic deflection modes, thus

improving the accuracy of model. 6 A two-link flexible
arm is modeled with a Lagrange-finite element based

method, and the performance of linear quadratic

regulators (LQR) with prescribed degree of stability is
studied: In a recent work, a Newton-Euler formula-

tion and Timoshenko beam theory are used: Stiffness

matrix accounting for combined flexibility of joints
and links is derived again for a two-link example. _ The

main advantage of finite element based methods is that
they can be applied to complex shaped systems,

covering a wide class of problems. However, the main
disadvantage is that they do not give much insight to
the dynamic structure of the system.

A general Lagrangian-assumed modes based meth-

od is presented in Ref. 10. The equations of motion are

developed !n recursive form to reduce the real-time
computation in inverse dynamic control. A symbolic
modeling method based on Ref. 10 is developed in
Ref. 11. Transfer matrices are used to develop linear

frequency domain model ofservo controlled manipula-
tors. t: The method of 10 is attractive for the folloxvir_
reasons:

1. It is an easy-to-understand conceptual approach.
therefore, utilization of the results by other re-
searchers in the robotics field will be at a maximum.

2. As a result of using an independent set of relative
coordinates in the kinematic description, the

dynamic model has a form similar to the rigid
manipulator models. Therefore, it provides more
insight to the dynamics of the system and may

suggest modifications of rigid manipulator control
algorithms for use on flexible manipulators by

exploiting the differences between rigid and flexible
manipulator dynamics.

2. PROBLEM STATEMENT

Explicit, non-recursive, symbolic modeling of robo-

tic manipulators with compliant links and joints is the
problem dealt with in this work. In order to accurately
study and simulate the behavior of the system, the
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modeling method should yield accurate models. Yet
simpler models conveying only dominant character-
istics of the dynamics are needed for successful

controller design. The Lagrangian-assumed modes
based method described in Ref. I0 fulfill these require-
ments. A recursive formulation is useful and critically

important in computed-torque control. However, the
non-recursive, direct dynamic form of equations is
needed for more general simulation and controller

synthesis studies. If the multi-cpu parallel computation
is needed in order to implement a detailed dynamic
model based controller in real-time, the recursive form

of equations is not suitable, rather, the explicit,
non-recursive form is desirable.

3. SYMBOLIC MODELING OF FLEXIBLE
MANIPULATORS

1. Flexible-arm kinematic description
Consider the kinematic structure shown in Fig. 1

representing a manipulator with serial links connected
by revolute joints. The elements of the manipulator

are numbered, and body fixed moving coordinates are

assigned as shown, where OoXYZ is the inertial
coordinate frame. 4 x 4 homogeneous transformation
matrices are used to describe the position and

orientation of one coordinate frame with respect to

another. Let _1_ =(qk.t, q_.z ..... qk.,_) be the gen-
eralized coordinates associated with the degrees of
freedom (d.o.f.) of element k. For instance, if element

k is a single d.o.f, revolute joint, then oa.j.= qk._, if it is a
two d.o.f, revolute joint, then Chj=(qk.t, q_.2)r, If

element k is a flexible link, Oh.J is a vector of modal
coordinates, if the link is rigid (zero d.o.f.), _h.j is a null
vector.

The position vector of a differential element along
link i (element 20 with respect to coordinate frame 2i
is given by (Fig. 1)

21hzi= [rlzl, 0, 0, 1] r

+ _ q2_.j[x2_j, Y2t.j, z2j.p 03 r. (1) .
,/-!

The second summation term in (Eq. 1) describes the
deflection of the element 2i at that point in terms of

modal coordinates approximately. The x2_._, Y2_._, zz_.i
are thejth mode shape functions of the element in x2_,

Y2_, z2_ directions, respectively, q2_.j is the generalized
modal coordinate, n2t is the number of modes used to
describe the deflection of element 2i. The absolute

position of this point with respect to the inertial frame

OoXYZ is given by

Oh2,_n)= oW2 l- 1." Z_h2_) (2)

where °Wzg_ z is the 4 × 4 homogeneous transforma-
tion matrix from coordinate frame 2i to the inertial

coordinate frame (Fig. l)t

Wzi- t =At'A 2 ... A2_- t. (3)

i'Prec_ditlg superscript ° will be dropped for notational simplicity.

'b

t'q

¢i

"ltl /
(_t.t_ "' //

/AEtmnent No_/

Inertial _mme

Fig. 1.

S:"

\ \ ,42 _,

ELement No. 2/+ I

Kinematic description of serial link flexible manipulators.



304 Robotics&Computer-IntegratedManufacturing• Voume5,Number4,1989

.

"7

4
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2" + 41'A
/

Fig+ 2. Illustration of flexible link transformation.

Hence

h2i

1 0 0 lz_]
!

o,o!j001

000

0 -(Oz)2i.j (O,)2,.j x2,,j

(0,)2_.i 0 -(O,)2,.j Y2_.j

-(0,)v.1 (0=)2,.i 0 z2,.j
0 0 0 0

(9)

Azi- t (for i = 1..... N), are joint transformations and
no approximations involved in their description.

Note that ifa link is considered rigid, the corresponding
link transformation will be a constant matrix. Approxi-
mations are involved in the definition of link trans-

formation, A2_, as described below. If link i (element

2i) was a rigid, slender beam, A2+ would be (Fig. 2)

1 0 0 12+]
/

0 1 0 i ] (4)
Azi= 0 0 1

0 0 0

The change in the position and orientation of the
(2i + l)th coordinate frame due to the flexible deflection

of link i is described by a differential coordinate
transformation (Fig. 2). This is an approximation in

the kinematic description. The approximation is valid
to the extent that the orientation change of coordinate
frame (2i + 1) due to deflections is small enough to

justify the following approximation:

sin 0_i _- 0_, cos 0_i = 1. (5)

where 0"+ is the equivalent rotation angle about an
axis of rotation to transform the orientation of(2i + 1)

to that of the (2i+ 1) th coordinate frame. This
approximation is well satisfied in robotic applications.

Finally, the link transformation A2+,

A v = A_ + dA_, (6)

dA'_, = A'2+"+4_'A- (7)

Invoking the modal approximation for the deflections

-(0..h_ (0y)2+ x_i/0

(0:h, 0 -(O_hi yzi"[

_'a=-(0y)2' 0 (0_)2,0 00 zffj

0 -(0:hfl (0,),fl xzfl]

= _ q2i.j (O');Zi'J 0 --(0,)2,.j Y2/,j,] l (8)

J=_ -(0>h_.j (0.)_._ 0 z2_./
0 0 0 0 uJ

3.2 Flexible-arm kinetics." Lagrangian-assumed modes
formulation

Once the kinematic description of the system is set
up, the next step in Lagrangian formulation is to form

the kinetic and potential energies and take the
necessary derivatives of the equations of motion:

- O--_.. + = Q,.,; {p= l, 2N;a7 q. ....
{r= 1..... n,}} (10)

where

N

K = _ Kz+ - total kinetic energy ( 1 I)

N

P = _ P2_ - total potential energy (12)

Qp.,- the generalized force vector. (13)

Here only the link dynamics are considered. Inclusion

of the joint dynamics into the model will be discussed
in Section 3.4. Kinetic energy of element 2i (link i)

_12+

K2, -- 1/2 Jo Tr{°hz'" °hr'}_r/gtrt (14)

°h2_) --" W2t- l" 2'h2_?/) (15)

°/_2#1) = W2,-x' 2'hz,_r/) + W2,-t" 2+/_z,_T/) (16)

where

w+,_, = J+, _/ ... A+,_

_'-_ {aw_,_,'_: I (,7),., ,:, t ,

2'h:i = _ ?12i.j[x:i4, Y2i4, zzu, 0] r. (18)

Substituting Eqs (15) to (18) into (14) and summing
over i as in (11) yields the kinetic energy of the
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manipulator links

K= 1/2 _ 2,-t2 t TdOWzt_t [
l-t l=l u=t t=l v-t

+ _ Ec2,._+ c2_,,j]q_,.j
j=t

j=l kml

.l )+ Czl#._q2l.kq2i.j W2i-xih.,
j=l I'=1

+1/2 i--I_ Tr( W:_i-t

[j_ ._ C2,a.,O,,a//z,.,lwir_t) (19)

where

21

C2,-- [_z_, 0, 0, 1]r[_2_, 0, 0, l]p(n)d_ (20a)

I|

C21.j = [q,_, O, O, l]r[x2i._, Y21._, z2i.j, 0]#(_)dq

(20b)

;i1|

C2i.i.k = [xzl.j, Yzi,j, zz_.i, 0] r

[x2_a,Y2_a,z2,._,0]N_0d_. (20c)

The potential energy of the system is given by

N

P = P, + P. = Y_[(e,h, + (e.):,l. (21)
i=l

The gravitational potential energy, P_,

N /*t2_

P" = ,= t_" .Jo ar Wzi- tZth2'lrl)la(n)drl (22)

Substituting 2_ha_from (1) into (22)

where

Or = [9_, 9,, O,, 0] = [0, 0, -9.81, 0] (24)

2|

mg2i = [q2_, 0, 0, 1]r_(_)dt/ (25)

f_i

me2_'s-- Jo [x2ia, Y2_._,z2_.i, 0]rN_RI_. (26)

Incidentally, me:_._ is same as the bottom row of C2_._
in (20b).

305

The elastic potential energy expression, considering
bending in the y, z, extension in the x, and torsion

about the x directions, is given by

6_2z2i 2

dx2_ 2 - 2

(27)

Noting the truncated modal approximations for the
deformation coordinates of the links EEqs (l) and (9)]

P,=1/2 _ _ L k2i.J.kq2i.Jq2i,_ (28)
i_l j=l k=l

where

k2_._._= (k_)2_._._+ (k,)2_,_._+ (k:)2_.i._ + (k,)2_.;._ (29)

_., /Ox2_._\/Ox2_._\

(kx)2i.j,k=_ E(A_)2it---_q Jt---_q )drl (29a)

h, 02yzt.j 1_2y2i.i

(k,,2,a., = fl E(l,),,(_q2)(_)drt6 (29b)

['l,, fdz221.)'\ledZzzi.k\d('"",'.'=Jo )t (29c)

't,_/\_J (29d)

Note that the k2_#,_ term is the same structural stiffness
value that would be obtained numerically from finite
element methods.

3.3. Dynamic model: non-recursive form
For general purposes, such as simulation and

controller synthesis studies, the non-recursive dynamic
form of the model is needed. For computed-torque

(inverse dynamic) control, which is a specific control
algorithm, the recursive form is desirable? ° The

components of the dynamic model should be explicitly
separated out into inertial, centrifugal and Coriolis,

gravitational, and structural stiffness terms, so that
this information can be embedded in the structure of

the real-time control algorithm. For instance, the

generalized inertia matrix plays a critical role in
decoupled joint control of robotic manipulators. In
order to implement a real-time decoupled joint

controller for a given manipulator, the generalized
inertia matrix must be known explicitly so that it can
be used in control action calculations. In contrast, the

recursive formulation avoids such separations to
reduce the number of operations needed for inverse

dynamic calculations. The non-recursive explicit form
of the dynamic model is presented below. If the
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,_. 2,-I£ Tr( OW2i-1
cratednecessaryderivativesd_4areandtaken, and thein terms gen- 7,+_.,.,+ ,i-_ ,=t \by dt.dK/Oilp.,) (dK/Oqo.,) Eq (I0) are

_-T-' -T-/
cancelled, the resultant system of equations can be

organized in matrix form, x _ C2_Uq2i._
[M(q)]t i + C(q, _ + G(q) + [K]q = Q (30) j- t

where +2 _ _ C:,j,.q2,..?tz,.j]
qr __ [(ql.t, ql.2 .... , ql.,,), (ql.1 ..... q2.,,a).... , (q2s.l, 1" t k-1

.... q_)] × +' "E rr
One row of this matrix Eq. (30) corresponding to qp., • =_ ,= L ,- L _=z

2N . . "_ -+z t. ,,,,.,.,..,,o,.,=<+,,.., x,,,:_,,.,+...j+'£'£ =,(++,-,
%

s,,t t-t s-t _-1 \ Oqsa

,-,+' +,.,0,,]+,+.,) +,
n_+ r = row index (p, r).

+-_ Elements of the gravity vector

Y' n++ t--column index (s, t) in Eq. (30). G(p.,)(q)-- _ Or m02i + me2_4qa_4
i= t _-o_,m Oqp.r 1=l

Elements of the generalized inertia matrix: +#rwp_ z rn%.,. (34)

.,_t_ ___(2) ..+_,,,_3_ (32)PPIIp,I).(.Lt) _- '"(p,."L(:l,l} 7"- "+(p,r),4s,t) _ ""Ip,r).tsJ}
Elements of the structural stiffness matrix

m(_) _ _ T/OW2'-_ [,,.,,.,,.,,-._,,, \_ c_,+ _ _c_,., (kp,, for
_- t k(P")'u'" --- _0 ' " p = s (35)+t ,+1] for p # s.

-T-'-5-j
r Note some simplifying facts as follows+ C2i.'j.]q21,j

_ "] _ C,,, C,.,.,, k,.,., =0 for p odd (36a)+ C21,j.j,q2_.jq21.k
j-1 k-1 ..J qp., J c_W__t

(32a) Oqt,., = 0 for s - 1 < p 136b1

+, 1)p,,>.t,.,) \ t_q_., C,.,+ C,,,aq,._ l'v,r_ In symbolic expansion of Eqs (32) to (35) for a
"_ manipulator, these facts (36a), (36b) will be automatic-

(32b) ally utilized and will cancel out the terms that are

already known to be zero. Such capabilities are
_(a) _Wp_ _Cp.,., W_;r t; s = p (32c) conveniently provided by commercial manipulation"'<_")'("*) = [0 ; s _ p.

programs (SMP, MACSYMA, REDUCE).
Elements of the nonlinear centrifugal and Coriolis Considering (35) and (36), and rearranging gen-

terms vector: eralized coordinate vector into two groups associated
2,-t 2_t .,. [3_Wzi-x with joint and link flexibility

C(,.,,(q,/1) = ,=,,,,,2" ,,.rE .=_L' ,-1£ _=_£ ,rkdq,.,dq,._-- [qr, qr] ffi[(q_j, q_._.... )r, (qz,j, q4..j .... )r]. (37)

-7"-/-] The equations of motion (30) can be shown to have

I _ C2i.f]qzi. j the following form:x C2_+ [C:_ 4+ r

1 [ rn, [C,(qt, q_,il,,il_)_ )'G,(q,, q_) ],+ t_,_,,, q,,/it, _1,); ++ _ _. C,+..+.,q2,.jq+,., mrs m rjl.q,) [Gf(qt ' qz)j
jffil k= l

x 61Wr-------Zt_/,.,/l,.o) +[00 0 Ifq'l=
dq_.,
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c

3.4 Inclusion of joint dynamics

Inclusion of joint dynamics into model involves

1. modifications of Eqs (20a-c), (25), and (26) by
redefining mass distribution of finks,

2. augmenting a set of second order equations to (38)
as a result of joint flexibility and inertia.

DC motor-driven revolute joints whose rotor/gear
arrangement is elastically coupled to the links will be

considered. Joints can have more than one degree of
freedom. Elastic mechanical coupling between a joint

and link is modeled as a torsional spring. The following
assumptions are made regarding the joint assembly
mass distribution.

Assumption 1: Rotational kinetic energy of each joint
about is own center of mass is only due to its own

rotation. Rotational kinetic energy due to rotation of
previous joints and links is neglected. This amounts
to neglecting terms in the order of gear reduction ratio,

which is typically in the order of 1 : 100• Translational
kinetic energy due to both previous joints and elastic
deformations istaken into account.

Assumption 2: Rotor/gear assembly inertia is sym-
metric about the rotor axis of rotation such that

gravitational potential energy, and translational velo-
city of joint center of mass are independent of rotor
position) This assumption is generally satisfied by

joint assemblies of most industrial robots.

Let q[ = o_ ,,o_[(qt.t, (q_?,, q_!,,),• " " ) _I ,.tlt/) * * " ) * " "

(q_'_-t...... q°_-t_,.... )]

be the generalized coordinates associated with joints
(Fig. 3). The relative motion between a joint rotor and

elastically coupled link is (q21-t., o)- q2t- 1,,). The
contribution of the joint dynamics to the equation of

J

Fig. 3. Flexible joint-link assembly.

motion will be reflected through kinetic, potential
energies and generalized forces. The kinetic energy of

joint i (element 2i- 1) is

K2, - 1 = 1/2m21_ t( V_)2ir_ 1 '( V_)21- 1

+ 1/2wri-1112_-1]w2_-1 (39)

where m2__ t is the mass, iVo)2, ' velocity of center of
mass, w2,-1 angular velocity vector, [12,-t] inertia

tensor with respect to a coordinate frame fixed at the
center of mass of joint. From assumption 2, (V_jz__ t

will be function of the generalized coordinates of
proximal elements and will not depend on q__ L.,-

Therefore translational kinetic energy of joint i can be
'included in the formulation by considering its mass as

part of the proximal link. This is accomplished by
redefining mass distribution of link (i - 1) as

/22i- 2 =/20 + m2t- t 6(q -- [2t- 2) (40)

where

{_ f°r e=12'-2 (41)_(_ -- Izi - 2) = for tt # l,,_ 2

and evaluate Eq. (20a--c) with new definition of g as
in (40).

hid')From assumption 1, wzi_ x _- ,tzi- t.,

K,i- t = 1/2(¢1__ 1.,)r[/2i- l,l'12i'_aU__ L," (42)

For all joints of the manipulator

N

K(J_= _ K2,_,--l/2/ir[j]q3. (43)
i-Omm

-]-' -5-/

The contribution of joint potential energy to the
dynamic model equations is

v_ = v_ + v,_ (44)

From assumption 2, the gravitational potential energy

of joint i may be included in that of link (i- 1) by the
evaluation of (25) and (26) with Mr/) as defined in Eq.
(40). The elastic potential energy stored in elastic
coupling between joint and links is

= l/2(qt -- q3) r Diag{K,}(qt - q3). (45)

As a result of the contributions of (43) and (45)

equations of motion (38) is modified to the following
form:

m,_ m_jti_2 ) [C_qt, q2, ql, _h); + [GAqt, q2)J

+[00 01_qtl F K. 01<{qt--q3 }__l(q2J = L 0 0J( q2

[J]{it_} + [K,]{q3 - qt} = {u}. (46a, b)
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Y3 q4/ Y4/(x )
D_

ro \

_m_#._°'___------_ "_. . ,

_ q,/-u, J" .x,

ELementNo.I
Fig.4, Twoqinkflexiblemanipulatorexample.

4. A CASE STUDY

The described modeling method has been applied
to a two-link planar flexible arm, with single d•o.f

revolute joints (Fig. 4). In this case study, only the link
flexibilities are considered, the joint flexibilities are not

included. The bending deflections of links are approxi-
mated with two assumed mode shapes for each link•

Mode shapes are chosen from the analytical solution
of a Euler-Bernoulli beam eigenfunction analysis but,
of course, could also be otained using a finite element

analysis program• The mathematical model is symboli-
cally obtained using SMP symbolic manipulation

program and simulated with a VAX-I1/750 micro-
computer with the following objectives:

1. Verify that the model generated by the above
algorithm is correct,

2. Demonstrate the ease of changing mode shapes for
the given example manipulator, and study the effect

of using different mode shapes on the predicted
dynamic response of the system.

Model verification is supported by comparing the
response of the flexible arm model with that of rigid
arm model. Clearly, as the flexural rigidity, El=, of the

links increase, joint angle response of the flexible model
should converge to that of rigid model This is observed

as shown in Figs 5 and 6a, b. In the simulations of
Fig. 6, mode shapes corresponding to clamped-free
boundary conditions of a beam were used in the model.
Now, let us consider the case that one would like to

use a different set of mode shapes. The necessary change
required in the model is to re-evaluate the following

terms with new mode shapes (considering the fact that

selected mode shapes form an onhogonal set): {C2_,j,
C:i,_._, for i = 1, 2 and j = k = 1, 2: (C:,_, C.,., C4.1,

0.5

0

-0.5

(7)
-f.Q

-20 , , ,, '_ ...... - .... - " ' " _ " _ '

0 2 4 6 8 ,0,

Time (s]

Fig.5. Two-linkrigidmodeljoint angleresponses.

C,_.2.), (C2,1.1, C.,.2.2, C,*.LI, C,*.2..,), (K2.z._. K.'.2._',
K,.L_, K,,,2._)}, me2i.j must be updated with the new

values of the fourth row of C2,.j. Figure 7a-b shows
the same simulation case results of flexible model with

clamped- clamped mode shapes. The reason for the

faster convergence of joint angle responses compared
with those of the rigid model is that clamped-clamped
mode shapes results in a stiffer model than clamped-

free mode shapes.
Computational, complexity of the resultant model

is studied for real-time dynamic control of flexible

manipulators. These computational results give us an

idea about the algebraic complexity of the explicitly
symbolic model and the computational power need
for real-time control. Since we have obtained the

equations in explicit, symbolic form, we could simply
equally distribute the computational load over a
multi-CPU architecture where each processor could

work independent ofeach other. The computation time
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Fig. 6. Two-link flexible model joint angle responses---clamped-

free mode shapes: (a) EI_ = 10 Nm 2 (b) EIz = 100 Nm'.

for the inverse dynamics of the example flexible
manipulator (Fig. 4) is as follows:
1. Computer: VAX-11/750

(a) without floating point accelerator: 7 Hz.
(b) with floating point accelerator: 14 Hz.

2. Computer: 8 transputer (T414) configuration in
parallel computation architecture (estimated value,
not fully implemented): 80 Hz.

It seems that real-time dynamic control of large
dimensional flexible systems can only be realized by
distributing the real-time computation load over an

array of processors, for the dynamic model equations
are, in general, too complicated to be handled by a

single processor at a fast enough rate for real-time
control. An explicit non-recursive form of equations

readily lends itself for multi-CPU implementation.
Since the equations are non-recursive, the computa-
tional load may be distributed over a multi-CPU

system where the computational task of each processor
is independent of others. This is not possible using
recursive form of model.

_-°](b)

_ -0.5'
Q

O

- 2.0 . , - - • . , , ,
0 2 4 6 8 _O

Time(s)

Fig. 7. Two-link flexible model joint angle responses---clamped-
clamped mode shapes: (a) EI_ = 10 Nm 2 (b) EI_ = 100 Nm 2.

5. SUMMARY AND CONCLUSION

The elastic deformations are described by summa-
tion of a finite number of mode shapes which may
either be assumed or obtained from a finite element

analysis program. Link deformations are assumed to
be small enough to justify differential coordinate

transformation and linear elasticity theory [Eqs (6) to
(9), and (27)].

The modeling considers all dynamic couplings
(linear and nonlinear) between deflection and joint
coordinates. Links are assumed to be slender beams.

Revolute joints with multiple degrees of freedom are

allowed. Joint flexibility and link flexibility are
included.

An explicit symbolic form of the equations is directly
useful for simulation and control studies. Computer
automated symbolic expansion of Eq. (32) to (35), and
(46) to obtain a dynamic model for any desired

manipulator structure is studied and an example case
is presented• The dynamic model is presented in an

analogous way to the dynamic model of rigid
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manipulators• This displayed the way link and joint

flexibility enter the model, i.e. C21,_, C2_._._ terms in the

dements of generalized inertia matrix. The mode shape

dependent model parameters are identified and chang-

ing mode shapes for a given model is simplified (only

C2i,j, C2_,j,_, K2_._.k need to be re-evaluated for new

mode shapes).

The explicit symbolic modeling method presented

here has the following advantages:

1. improves the insightful understanding of dynamics

of flexible manipulators.

2. often equations must be simplified for real-time

control implementation• The importance of each

term can be determined by simulations, and the

unimportant terms can be eliminated from the

symbolic equations•

3. equations readily lend themselves to multi-CPU

parallel computation for real-time control.

4. changing mode shapes for a given model is very

simple.

5. the approach is conceptually easy-to-understand

and similar to rigid manipulator formulations.
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Abstract

Dynamic equations of motion of flexible manipulators are

more complicated than those of rigid manipulators. The

number of equations of motion increases as the number
of modes to be included increases. It is difficult to un-

derstand the effect of flexible motion on rigid motion via
recursive forms of the equations of motion for multi-link
arm even if it were efficient. On the other hand, the closed

form of the equations of motion is useful in understand-
ing the characteristics of model parameters. However,

the equations resulting from existing closed forms are too
complex to serve this purpose. Therefore, a method which

is structus]ly well organized and computations]ly efficient
is developed.

1 Introduction

One of the primary concerns in manipulator dynamics is.
computations] effciency. For the efficient form of the ma-
nipul_or dynamic equations, various recursive formula-

tions for rigid manipulators using Lagrangian [6], Newton
- Euler [10], or Kane's method [4], have been proposed.

For flexible manipulators, Book used the method of ho-
mogeneous transformation matrices. He first considered

small linear motions of a massless elastic chain [2] and

later considered distributed mass and elasticity [3]. When
the reeursive formulation is used, the structure of the dy-

namic model, which is quite .useful in providing insight for
designing the controUer, is destroFed. To overcome this

problem, several programs for rigid manipulators have
been developed to derive the equations of motion in sym-

bolic form. Symbolic formulation has the advantage of

allowing the identification of the distinct components of

the model. Mai_za-Neto [11] derived symbolically the
equations of motion of a two link flexible manipulator
by hand. A systematic method to symbolically derive

the nonlinear dynamic equations of multi-link flexible ma-

nipulators was presented by Cetinkunt [5]. However, he
did not explore the structure of the terms in the flexible

manipulator model. The conceptual framework leads to

design guidelines for simplifying and reducing the nonlin-
ear kinematic and dynamic coupling of robot dynamics.

The physical interpretations and structural characteris-
tics of the Lagx_ngian dynamic rigid manipulator model

was drawn by Tourarsis and Neuman [13,14]. The mass
matrix is deduced from the masses and center of gravity

of links. In turn, the centrifugal and Coriolis coefficients

are derived from an inertia matrix through the Christoffel
symbol. However, the method of deriving mass matrices

is not efficient. Asscla [I] presented a method which uses
the Jacobian matrix to derive the mass and gravity ma-

trices. This method is found in this paper to be very

efficient in the modelling of a flexible, manipulator. Low

[9] used the 3acobian matrix in deriving the equations of
motion of a flexible manipulator. However, the link defor-

mation was not represented in the assumed mode method

sad the structure of centrifugal and Coriolis force was still
complicated and hard to understand.

In this paper, a Lagranglan method is used to derive
the equations of motion for a flexible manipulator. The
;Jacobian matrix is used to derive the mass and gravity

matrices. The Coriolis and centrifugal coeffc_ents are de-

rived from the mass matrices using the Christoffel symbol.

2 Derivation of Equations of Mo-

tion

The total kinetic energy of an elastic link can be written
as

T'- _,=t.10

where ÷ is the velocity vector of any point on the elastic

link and p,, A,, l, are the density, the area, and the length

of link i respectively. The velocity vector can be expressed
by Jacobian matrix and generalized coordinates.

÷,= 3_4, (2)



D, •

Substitute (2) into (1),

T = "_ (Ji_h)T(Jffl_)piAidz,

= - 3 p,A,dz,)qj
0

= - Mofliilj
2 i=l j=t

where

f0"M,_ = ff J_a,A_dz,

The potential energy due to gravity is

Ug = gT rjpjAidz _

" " " = E m/gTra

where g is the 3 x 1 gravity veu'-tor and

Substitute the -kinetic energy (3) into (11),

d (OT) = d (,_. Moqj ) = E ll'Iuq_ + _ dM., .--_qjd_ 04, d_ .--" /--"
3=1 3=1 3 =1

(12)

where

dt Oq_ d-"t-- Oq_ q_
k--1(3) k=_

Therefore,

d 0T

i=t j=l _=l Oqk qiqk

.... = M°4i+ _. Oqk +_)4j4k (14)
": :' = j=l k=l Dqg_

(5)

/o"

The potential energy due to elastic deformation is :

(7)

where E is Young's modulus of elasticity, and I is the area

moment of inertia, u is the dastic deflection which can

be expressed as follows.

= f ¢,J&i (8)
3=1

Therefore, the elastic energy can be rewritten as (9}

where

='±f:f:./"g,
,=I 3=1 2=1

0_ O_ k

Lagrange's equation is

OT

Oq, - aq([
j=l k._l

d OT OT O(U$+U,)

Oq, = Q'

-. =
2=1 k=l

Substitute the potential energy (7), {9) to (11},

0U_oq, Z r Or,= mj9
3=1

¢t

X-" T-(')

where J_') is the i th column of Jacobian matrix J;.

Oqi -- 06ij ('_ Kqk6,36i_ )
" s_-.l J=l k=l

(15)

(16)

=fK, j?6,! (17)

j=l

The Lagrangian equations of motion can be written sym-

bolically as follows.

f M, i_, + f Ko,6,l+ (18)

3=1 .7=1

1 OM. OMik 0 +'_" T.(i)

or

f
(10) J=_ _=t _=t _=_

(_9)

where q is the vector of generalized coordinates. M is the

generali,ed mass matrix, K is the elastic stiffness matrix,
C is the coefficient matrix of Coriolis and centrifugal force,

(11) G is the gravity force, r is the vector of g_neralized forces.

2



3 Illustraive Example

In this section, equations of motion of a planar two degree

of freedom flexible robot are derived as an illustration. In
the conventional two serial link robot, there is a difficulty

in measuring the end point slope a of link AB as shown

in Fig. 1.a. In order to overcome this problem, the flex-
ible robot with a parallel link mechanism is developed

as shown in Fig. 1.b. The angles 0: and 03 ate equal
because link AD and link BC remain parallel. In this

paper, equations of motion of only link AB and link BC
ate derived because those of the other link c_n be derived

_milarly.

3.1 Mass Matrices

and Gravity Vectors

Deformed positionvectorsofeach linkinFig. 2.aand 2.b

ate describedas follows:

_t = (ztcosSt - ,tsinOl)i + (xlsinSt + utcosOt}j (20)

_': = [ItcosSt -,,t, _inet + z:cos(e_ +02) - a,.si.(el +o:)]i

+ [llsinOt + utecosOt + z.,sin(6t +0:) + u_cos(ft + 62)_j
(21)

where i and j are unit vectors along the inertial frame,

Xo and }_). The elastic deformation, a,, can be expressed

by finiteseriesofmode shape functionswhich satisfyas-

sumed boundary conditionsmultipliedby time dependent

generalcoordinates.Suppose that the amplitude of the

highermodes isrelativelysmallcompared with the first

mode, two modes per linkate consideredin thismodel.

ul(zt,t) = _tt(tt)(ll(t) + _,t.-(t,)(t:(t) (22)

,:(z2,Q = _':t(t:)_:t(t) + _,:_(z=)_::(t) (23)

The elastic displacement of the end point is

at, = at(It,t) (24)

Velocity vectors are related to general coordinates by the

Jacobian matrix [1].

where

qt: = {0t,0:,_lt,&:,C'1,_::} T (27)

yt=[-_,C_-z_.¢t 0 -_"t_St -_',t:C_ 0 0 1--utb t -- t1C 1 0 t,ttCt _'t2C1 0 0

(28)

j, = [ -11S1 - ul_Cl - _:C1: - x:St: -,:C1., - z2S1.,- +lie 1 ltleSl l_.2S12 -q- r2C12. -u2S12 -_ z2C12

-V, lle S1 -_'l?e Sl - _/'21S12 - _/'22 S12 ]_lltCl _/'t_ Ct _/'_.tOr"- _..:Ct2 _ (29)

The Jacobian matrix, Jt and J_, can be easily derived by

the MJac function of SMP(Symbolic Manipulation Pro-

gram) [12]. Using the 3acobian matrix, mass matrices and
gravity vectors are calculated by the following equations;

M,_ = p,A,J_ J_dz, (30)

±/;{G,}- p,A_B[2, i]d.z _ (i = 1,2) (31)

The second row of 3, is used in the gravity vector since

the gravity is acting in the negative direction of Y0-
Elements of mass matrices and gravity forces are:

fO l i
Mr, = (=,=+ a_)pt.,tld=t

+ [11+ at:, + a; + z_

+ 2(/_z_C:- l_u:S,.

+ ,.t_u,.C: + at,z:S:)]p2A2dx2

fo"
+llz_C2 -- 11a25_ + uI,u_C_ + at,z,.S:)p:.A:dz:

fo"Mt-_ = =t_tp_ At d-zi

+V'tl, (11 + z:C: -- u_S:)p_A,.d_:

fo"MI_ = zt_/,t,.plAtdzl

fo

Mrs = _/'-.t(r: + 11C: + ut,S,_)p:A2da'_.

fo':J_'l_ = _/'2.,(r,. + I_C: + ut,S:)p:A_.d;r,.

fo I" "_
"(_ + "

3



M24 = 1['12e (z2C: - u2S2)p:A2dx:

M2s = z,.1],2t_,.A_dx2

M2e = z,.¢:,._A2dz: (32)

/o"M44 = ¢_.pzAtd.zt + ¢_2_ P2.A2dz,.

_b21p2A_dz2

0 la

0 I_

ZGt = (ztCt - _qSt)p_Atdz_

fo"

where

,,¢,,+.= ¢+,+(_,,)

The integrals in equations are labeled as fofiows.

m_ = p+A+dx,

fJm_l,c = z,p,A, dz,

1'
J, = x_p,A,dx+ (36)

LM,_ = _/,,j (_,)p,A+dz, (37)

fJ
where lie is center of mass of link i.

The first three terms are parameters which are related

to a rigid motion. These are-called zeroth, first, and sec-
ond moments of inertia respectively. On the other hand,

the last three terms are parameters which are related to

a flexible motion. LM 0 and AM,_ are called the modal
momentum coefficients and the modal angular momen-

tum coefficients respectively [7]. The physical metaling
of these terms is not easy to explain. However, these are

have the following properties [7].

_M_= m (40)
2=1

_-[LMjAM, = rnl_ (41)
_=1

_AM/= : (42)
1=1

NM, i are used for the normalization of mode shape func-

tions. Generally, these coefficients have been chosen equal
to 1 or the total moment of inertia of the link.

3.2 Centrifugal and Coriolis force

The velocity coupling matrix which are consist of coeffi-

cients of centrifugal and Coriolis force can be derived from

the mass matrix using the Christoffel symbol [13,14].

•
c,_(i) 5i o_ + (43)Oqj Oq_

(33) C_(i) characterizes the effects on link i which are caused

by the coupled velocities of link j and k. The diagonal ele-
ments for j = k are the coefficients of the centrifugal force.

The off-diagonal elements for j _ k are the coefficients of
the Coriolis force.

In the flexible arm dynamics, the states can be patti-

(34) tioned into the rigid states 0 and the flexible states 6.

2 6 2 2 2 6

E  J,+E E v,,(z)eJ++EE o,,+(,)+,++
:=I 3=3 .7=1 k=l 2=1 k=3

4
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6 6

+ Z Z R_Iilij_ + O,= _, (i = 1,21 t44)
2=8 k=3

E B,,o,+E_,,_,*EE
t=t J=3 J=l k=l

6 2

+Z Z k,.(i)_,i,+E K,,_,=o (i=3,6)(45)
2=3 k=a 3=1

Therefore, each velocity coupling matrix can be written
as follows:

2 6

p,.(_)e_o;+Z Z O..(.)o;a_
3=1 k=3

fo la
d22 = "_r:[2qp.pz A t dx l

fo':+g'12,[( (S,.x_. -i- C.u: + uleJp2A..,dx..]

fO l:d31 = I_'11¢ (S2a" 2 + C_.u2)p2A2dz_.

da:_ = ¢1:. (S._z: + C2u2)p_A,.dz:

!{a__ oa,. aA__} foPi'(i) = 2 Üq, + -- (46) l,Oqj aq, d4z = q'21(_zq21 + ¢,:_q:_.)_A,.dz:

I .a__ aB,_ aB___}
Q_,(i) = -_{ Oq, + -- -. Oq_ Üqi

R_(i) = -£t Oq_, + Oq_ Oq,

Oq_ Oql

(47)

(48)

(49)

(_o)

(sz)

Because mass submatrix D n ate not the function of elas-

tic state _, in equation (29), R3_(z) is eliminated. The

number of independent centrifugal and Coriolis coeffi-
cients also e_n be reduced using the symmetry and the

zefleefive coupling properties [13,14].

Cp,(i) = Cti(i) (52)

C#t(i) = -C#i(k) /or j < i, k (53)

The reflective coupling property that Tourassis and Neu-

man finds for rigid arms is not always valid in the flexible
ease. Therefore, even though the symbolic manipulation

program can be used as the computational tool, the sim-
plieation procedure must be completed undez the super-
vision of the analyst.

Using these properties, the following independent terms

ate drawn fzom elements of the velocity coupling matrix

c_(i).

fo 1:_dt = {(uteC: -- lt S..)z: - (u_,S: + lzC_.)u_p.2A_dz:}

fo 'dlt = _b_zqztpzAadzz

+_u,[ (&_: + C_u_ + u_,)p:a:d_:]

(54)

dsl = fo G

ds2 = _0l_

q'=z{(,t'_._q:t +q'=:q::)+(u_,C=-l_$:)}p:a:dz:

fo':

o 1_

fo"
Using these coefficients, the velocity coupling matrix for
the two link example can be simplified as follows:

c(z)=

0 d_ d:z d:: d_t d4_
d_ 0 0 d_t alia

0 0 0 0
0 0 0

0 0
0

(55)

C(2) =

-dr 0 da_
0 0

0

da: dsz ds:

0 dsz ds:

0 -dot�2 -d_:/2

0 -dn/2 -dr:/2
0 0

0

(56)
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c(3) =

-dsl
0 0 -d6_ -do2

0 0 -do1�2 -d6:/2
0 0 0 0

0 O 0

0 0
0

(57)

c(4) =

0 0 -dn -d_

0 0_-d71/2 -d_/2
0 0 0 0

0 0 0

0 0

0

(58)

c(5)=

-d41 -dsl do1

-dsl dex/2
0

dn 0 0

dn/2 0 0
0 0 0
0 0 0

0 0

0

(59)

c(6)=

-oh: -ds_ de_ dr:

-ds2 d02/2 dr2�2
0 0

0 0t0

0
0

(6o)

4 Conclusion
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CONTROL OF A SMALL WORKING ROBOT ON A LARGE

FLEXIBLE MANIPULATOR

FOR SUPPRESSING VIBRATIONS

Soo Han Lee

Wayne J. Book

The George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332

The vibrations of flexible manipulators have been usually damped out by using the

joint actuators. The joint actuators must have a larger bandwidth than flexible vibrations.

This means that the additional use of joint actuators has larger torque per link weight ratio

(or actuator weight per link weight ratio) compared to a rigid link robot. The high weight

ratio degrades an advantage of flexible manipulator, light weight, especially when a flexible

manipulator is long. A simple solution to decrease the weight ratio is to use joint actuators

for only nominal position control. The vibrations are suppressed by a passive damping

treatment or momentum exchange devices that increase total weight. A flexible

manipulator at Georgia Institute of Technology gives another solution, that is, damping out

the vibrations by using inertial forces of a small rigid robot carried by large flexible
manipulator.

An approximately human scale three degree of freedom research robot designated

SAM (Small Articulated Manipulator) can change the direction of inertial force by

changing joint angles and joint torque directions. The direction of the inertial forces affects

the vibration suppression effectiveness. The most effective angles and torque directions of

the small robot depend on the mode shape of a large flexible manipulator designated

RALF (Robotic Arm, Large and Flexible). Also the mode shape of flexible vibrations

varies with the angles and joint torque directions of the large manipulator. The issues

related with the angles (nominal position) and torque direction (inertial force management

scheme) are addressed.

A small robot carried by a large flexible manipulator suffers from relatively large

acceleration and nonlinear forces. The controller of a small robot should keep the robot at

a nominal position and follow a predetermined inertial force management scheme for

damping the vibration of the large manipulator. The control law should be simple and

effective in order to overcome the speed limit of computations. Studies on this control
issue are also addressed.
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ABSTRACT

Initial experiments on state space feedback control of

a large flexible manipulator with a parallel linkage drive
are described. A linear controller using joint angle and

strain measurements was designed to minimize a

quadratic performance index with a prescribed stability

margin. It is based on a simplified model that accounts for

the constraints of the parallel linkage kinematically rather

than through constraint forces. The results show

substantial improvement over a simple P.D. joint control.

INTRODUCTION

A large, two link flexible manipulator designated

RALF (Robotic Arm, Large and Flexible) is the subject of

ffaodeling and control research at Georgia Institute of

Technology. It is hydraulically actuated with the second

joint powered through a parallelogram linkage. This drive

linkage is representative of drives found in many large

articulated arms, It allows the substantial weight of the

actuators to be located near the base hence reducing the

weight that must be supported and the inertia that must be

moved. A parallelogram arrangement allows the drive for

the second joint to carry some of the bending load on link
1 as well. Most control researchers have avoided this

practical configuration, especially when the links are

flexible for the more tractable direct drive, serial link

problem. The direct drive concept has not been employed

for large articulated arms in earth's gravity and may never

be practical in that application.

The difficulty of research with the parallelogram

mechanism is the conceptual difficulty of modeling a
system with nonlinear large motion dynamics, distributed

flexibility, and constraints of closed kinematic chains. One

valuable contribution of the research described here is the

determination of a simple yet adequate model for RALF

and other arms of this type. The second contribution is

the analytical development and experimental testing of

simple linear state space controllers.

DYNAMIC MODELING

Dynamic models for RALF have been developed and

compared to experiment as reported in Lee, et.al. [1].

That model included an assumed modes approximation

for the link deformation and algebraic constraint

equations representing the closed chain topology of the

parallel actuating link. A simpler model is used here as

the result of two key assumptions. First, the kinematics of

the deflection assumed allows no beam extension. Hence

the distances between pin joints in the parallelogram

remains constant and deflection of the lower or actuating

link causes no rotation in the upper link. The thicker

cross section of the upper link between the pins (points E

and F in the schematic of Fig. 1) makes reasonable the

second assumption: rigidity in that segment of the upper

link. Consequently, the segment E-F remains parallel to
the same line while deflections rotate the lower link. This

is in sharp contrast to serial link arms. These facts will

now be incorporated into the description of the arm's
motion.

As proposed in Book [2], kinematics of serial flexible

arms is readily described by 4x4 transformation matrices.

In particular, consider the two link arm of Fig. 1. The

transformation matrix between link-fixed coordinates and

base coordinates is composed of joint transformation

matrices A_ and flexible link transformation coordinates

Ei. The transformation to a point located a distance 12

along the beam from the second joint is

Tz = At E1 A2 F__. (1)

The point on the second link is located at :r,_ in the link-

fixed frame or at point rz in the base frame, where

1This work was partially supported through NASA Grant

NAGI-62.3 and the Computer Integrated Manufacturing

Systems Program at the Georgia Institute of Technology.
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r2 = "1"22r2. (2)

The constraints of the parallelogram mechanism on link

two can be readily incorporated in the rotation matrix of

Et. In general (for small deflections)

fo ,ju lrloo:l'-- @zlj 0 "Oxij vijl+lO I 0Ei"

41ij[:Oyij XlJ 1°
j-I '.. o wijI Noo l i

0 0 0 J L0 0 0

where

6U is the time varying amplitude of the shape function,

Uij, Vii and wii are the x, y, and z components,

respectively, of the shape functions,

0_ij, 0_j, and 0,_i are the small rotations of the body-

fixed coordinate system at the point of interest,

mi is the number of shape functions needed to represent

the flexible kinematics to the degree of accuracy needed,

and Ii is the distance to the point of interest along the links

neutral axis, which is _, the length of the link, when the

point at rk is not on link i.

In the special case at hand the rotations 0_1i, 0ylj, and
0zl i are zero as seen by link two. Only translations of the

tip of link one are experienced by link two.

It should be made dear that the model still accounts

for rotations of the beams in the equations, but that the

kinematic constraints prevent those rotations from

propagating to link two in the ideal case of the joint

rotational axis on the beam neutral axis. Comparing the

drawing and the schematic of Fig. 1 will show a substantial

offset in the laboratory hardware. This is an additional

approximation in the dynamic model.

Given the above description of the arm kinematics,
i

8.4 the derivation of the dynamic equations of motion can

proceed using Lagrange's equations substantially the same
as described in Book [2]. The method shown here for two

links can be extended to additional parallelogram
actuated links.

It is desirable to account for the cumulative l

compliance of the actuating link, pin joints, and hydraulic

fluid in the actuator. Including a simple massless spring

effectively accomplishes this. One end of the spring is

attached to the second link and the spring compression is

prescribed by the actuator displacement. Lagrange's

equations can accommodate this model simply with an

additional term in the system kinetic energy. The method

employed here differs somewhat, however. The actuator

force, instead of displacement, is chosen as the input. The

force acting through a massless spring is instantaneously

felt by the link and the spring is of no direct consequence.

The actuator spring is of consequence in the selection of

assumed mode shapes for the links, however, as described
below.

The transformation matrix E, contains deflection

displacements and rotations as a function of position 1,

along the link. The spatial dependence of these

deflections, their shape, is theoretically required only to
meet modest restrictions at the link boundaries in an

infinite order model. A finite element approach was used

in this research to determine the shapes from detailed

models of the link geometry and material properties. Ofi

crucial importance to the accuracy of a low order model J

are the boundary conditions applied in deriving thel

shapes. Equivalent springs were used to represent thel

actuators for both links. Equivalent masses and inertias!
were also placed at the end of each link, yielding boundary 1
conditions at 3 points on each link: at each end and wherei

pinned in the middle. At these points on

Link 1: pinned, spring, inertia
Link 2: pinned, spring, mass

The final nonlinear equations derived by Lagrangian ort

other equivalent method is of the form

M(x) X+ H(x,x) >c+ K x = O (4)

where t h e

x is a vector containing the joint angles 0 i and

deflection amplitudes _i

M is ihe inertia matrix

H(x_) contains the nonlinear velocity dependent functions I

K is a spring constant matrix

Q is a vector of actuator torques.

CONTROL

Using the model developed in above, an LQR

(Linear Quadratic Regulator) controller was developed I
for RALF. The points about which the model was l

linearized are 01 = 0" and 02 = 90". The LQR controller i

utilizes strain feedback from strain gages mounted near
the base of the links to control vibrations of the links.

The linearized form of the equations of motion is:

[M] (x) + [K](x) = (Q)

where x, M, K, and Q are given by:
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l 2j o ]814400 00 0 60.94

Note that: Ot = 01o + _01

02 = O= + 02

where Ore = 0" and 02o ffi 90". See Figure 24.

writing this in state space form yields:

dEXjO [0 ilia)[o]dE " _ _( " .M-IK + M-I Q u

For this LQR controller the following quadratic cost

criteria was used to obtain a prescribed degree of stability:

1
PI -

t

f e2at [XT PX + uTRu] dt
O

with a, P, and R given by:
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and u = -F(x - x,) where x, is the reference state variable.

Notice the large values in the [Q] matrix corresponding to
the joint position variables. Two factors influenced these

numbers. First, the system model was derived using

inches as the unit of length. This resulted in very small

numbers when [M]-t is formed. Secondly, the hydraulics

actuators are very stiff and inherently have a high gain.

The large numbers in the [P] matrix compensate for these

factors. The small numbers in the [R] matrix also resulted

because of the system of units used in deriving the model.

Using a controller design software, CTRL-C, the

LQR feedback gains were found as follows:

F F2.8161E7 1.3518E4 3.1388E4 8.3383E3 2.8013E5
"[1.5035E5 -4.4833E3 3.0015E7 1.0065E4 4.6735E4

1138.4 4.483E4 248.226 ]
-12.9825 7.7616E4 268.2405J

This yields a state space system oftheform:

i = (A - BF)X + BXR

It should be mentioned here that the feedback gains found

by solving the LQR equations do not result in absolute

values. What is important is the relative magnitude of the
gains. When the controller was implemented, the gains

were scaled to match the physical capabilities of the

system.

The controller for RALF was then implemented on a

Microvax II computer with a sampling rate of 8;

milliseconds. The language used is FORTRAN. All path i

planning is calculated before movement starts. Thel

following graphs show the results of the LQR controlleri

compared to a controller that does not utilize strain

feedback, ie., a controller using joint position feedback:

only. The LQR regulator uses differentiation and filteringi
to estimate all rates.

Figure 3 is a plot of the strain in the lower link when.,

the manipulator is subjected to a step input. Figure 3-a.I

shows the strain in the lower link when the controller usest

joint position feedback only. Figure 3-b. is a graph of thei

strain in the lower link when subjected to the same inputl
but using the I.,QR controller with strain feedback instead, i

As can be seen in Fig. 3-b., the vibration amplitude in the
lower link is reduced much more rapidly when the LQR
controller is used.

Figure 4-a. shows the strain in the lower link when

the controller uses joint position feedback only. Figure 4-
b. is a graph of the strain in the lower link when subjected
to the same input but using the LQR controller with strain

feedback instead. Again the vibration amplitude is

reduced much more quickly when the LQR controller

incorporating strain feedback is used.

Figure 5-a. shows the strain in the lower link in

response to a disturbance to the manipulator's structure.

In this case, the manipulator's position is being

maintained by the controller that uses joint position

feedback only. Figure 5-b. shows a graph of the strain in

the lower link when subjected to the same disturbance

when using the LQR controller to maintain the

manipulator's position. Much better disturbance rejection

is seen in Fig. 5-b. than in Fig. 5-a.

SUMMARY AND FUTURE WORK

It is seen from these experiments that a suitable

controller utilizing strain information from the links can
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successfully damp out the vibration in the manipulator.

The LQR controller is a good example of these. Since the

structure's dynamics are non-linear, a better controller

might be one that incorporates some nonlinearities and

adapts to changes in configuration. Work on this aspect is

underway.

1.
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Figure 1. Robotic Arm Large and Flexible (RALF);
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DECENTRALIZED AJ),_I3YE CONTROL OF A TWO DEGREE OF FREEDOM
_LE MtM
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A mbua ,Klaptive coutro] is derived by sipal-syathesis

methodsfor a lizl_ flexg_ two dezree_-freedom mulpulnt_. The
ameroiler for mcb joint is deccaUalized,us_ m_caU d me
joint's peaitiox as well u one link's main. The coupling to other
dynamics isInmled m a bounded ance_Rty i the model A _

IsooLlm heas d_.lopcd msdis outlk_ Pcrforms_ d thc j_am:zd
mmoner it _ to a_ £_KlrtticP.egulator(LOR) mJ to
anindependentjointcontrol.Bothsimulationsande_-imentsare
pr==nted.The_ ofpykad variatioesaremmidend atthispoint.

L INTItO_

Themhae_ roboticam hebeeadesiped_ r_krayby
iplemeaeaS dza hk lengthsandhea_ steel_ in erder to
addevupmifiemi m:uracyand _ _ the mb_s mow_ The
resultin8 dleadvantasesindude slow motion speed, low payloadto
weisS/rntio md high powe_ comumptioa. To overcome theaeissu.._,a

robo_armwithali_-weisht_ pose,animporumtsolntloafor
thedsaipe_ofthene_ g=ae:ntionofrobots.The maiul_oblemw/th
liOt-wuishtstruauresisintheresul__ v_atiomwhicha_e
aatura0yeac_edsathearmiscommandedtomo_ orisdistm4)e_An
effez:fivc ocmm3d is (me k_y to mo_ns the flc_le arm with hiKh4peed

la onk_ Iodemmstrate the controlsystem otra fless_deann, a I

•-d lqesg)k),isusedintheexpe_mem.Th=robe6csyste_withthe
iadel_.ndemjelatPD t?roportio_al-Derivntive)metroller,whichis

_ aaadvam_==e_01alsorithmusinSn_ schea_laother,
words,--4,a.,_,t-linkcanbemmiden_ asasubsystemo_theo_ran
_tm. U=derm.,identiond the_ _ haenm=med tram '_
of each subs_tem, the dyutmlc s3_temd the manipudatormodce is !
_lmtrated to he beuadedby the refeseaeemodel,whichis dmsea to he
subk. The lxm_ n_nin_ of the uz<mai_y is presumedknow_
maii_ the _ infm'matioa for a stochemic approach _ '
[3]. Thus, the feedback systems are also insensitive to other

xm:ertaint_ inch us ffictiou, measuremem cm_, backlash msd etc.

Gutm mtchiaz mndkiom are resumedto paramee duz the
mccrtainty veao_ does not influence the dynamics more than the

m,u_ inp- does[4].The,_-_y,,a._.aapu_._ wd
here results in a robust design that reduces the burden of ou-line

eOmlmUeim,whae,.,am_iarylupuswiththeulxlatemioeshouklhereI
faster _ rate and smallex steady-state errs.

......Simu]adom,=dexperimeaUarecarriedoutto==parethis
controller to the independent joint PD controller •rid an L_R

amt_oile_. The sensitivityot the coutroipedmmancc to vadntiom hs
i_tyloadrans_ fi'emO_ to 40_ _ the am mucture is mmldered.

ILDYSAMICMODEUNGANDINDEPENDENTJOINT
CONTROU_it

To spcci_j the robot cca_trollcr, the dyumnical equations of

molioa need to be dcve/opcd fc_ the system dedsn [5]. A risid trm will

lurvem_ pmcralizedcoordinateperjoint,but a_ armmay have
mmsy. Transformatious represcntin S thc joint coordinates and link

deflection can be used to represent tbe position rt d • point. The

velocityeau bc relatedto the co_dinatc _ as[7]

wh_m
• is the vdod_y vmcr in the _ mordinates,

X_ reweseau the timederivnt_ vect_ including i joints,
say, qz, qz,.--qi, and Lt-i time dependent flcx_e coordinatc_

The kinetic caerlD, oL the n-link flc_lc arm is thee:

II

] t_111 r,iTr,i dm (2.2a)KE = _ tnkt

II

=2 t - 1 xtT tnkl

"2 n

I-I

(2.2b)
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It is mentioned that the inertia matrix M, a function of

p_fion, is symmetric and p_ve definite. The kinetic energy of rigid
robo_ arms have tha same sw_nu_ as (20.a)

Without the effectof gravity,the potentialenerlD,of the
flexiblearm which includesthe elasticjoint and straineneriOis

z _ K _, (2.3)
PE m

V/_Ue
= X. XO, Xo is the ustrctchcd ccxxdin_ " tha "home"

_inR_[7_

t_- Matrix-Vector f_a'm_"

M _+HX+r3-q, (2.4)

where

Tha similar f°rm has ab° been f°und in th° ril|id arms wlth°ut tha I
ss_bml tem K.

Hence, a multi-link flexible ann with independent joint
_ wl]Ibe sXable.Th_ cas©ofarilsid-linkmanipulatorhasbeen
m._ byA,adaandSZodaep].Ther_.e=cydomm
has been taken by Book [I]forflexiblearms,and physically,the

feedbacks)_cm effe_ _u_ eachjoh_withan equivale_rzxa_
sw_ anddm_. Thebq_uztorq.ethanha.th_fo0ow_tor_

T] = Kp]q i + Kdtq t , (2.5)

where
_ ,nd_d_,_ _ _o,,_,
q_ = _g/" O,io • q_ois the reference path and mumcd Zo be

coema_ _ - qi-

oTi = Tq , (2.61

where

T qT" (rl' _2 ...... Tn ]' " [ql' qz ..... qn ]'

Choosea LyapunovcandldatnV 8sso_atcdwlth tl_ total e_q_ of the
feedbacks_u_:

- ½[X_,X + _ + qX_oq],V(X,X,q) (2.7)

where

Kp -dtag [Kpt]

DMmmdadnS V wleh req_x m dine Si_s
.

. _TKp _ + _THx + ZI _T_t_ + _TK_ (2.8a)

- I iT_ ,
. q'T Kpq + iT(14 + I0_1 +

_y_ ('zs).('zO, (z4) .nd _ .L-w-m.=._ ofO_-m) ;-.o
above, ,_

-- )

r
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_ITKp_I 1. _T_I_ "T_). + _(q - H_) +

_Tlp _ 1 iX(_l . 2Xli. + iXO +

-T
. q Kp +

wl_m
_) -d_tksl is• _ mu_.

_o_e., the sys_m with a local j_d,v PD o0mrollcr leads to
the dcvelopmeut of an advanced control algorithm usin| a
_ schemewbleh is _ on _donmdoe trander born
ou ip.oup of,cmon snd aw-_--cn to othen.

i_ DECENTRA/JZED AJDA3PIIVECONTROL

Without loss of generality, the system of a two-dqp'cc-of-
keedom fle_a'blc manipulator wizh the effect of grav_ is consklcrcd
born the com_ _-wpoinC i.e, no 2. To comt_ze widsfricdoa and oth_
d_mb_ce_ tt_ _re _nd u mc_mim_ R(X.X_ dm _ of
mee_ ,re. dD. mwrimm -" _io_

N(X)X + H(X,X)X + K,_ + G(X) + R(X,i) - q (3.1)

Since the inertia matrix, M(X), is square, symmetric and
po_ivede6nlm,o_ canalwap 6_ a ems._ m,erix_ su_ thaxtha
elmentsot_ _x)nd_ totheo0uplinS_ axezm a,,a

Pl ->I.x(x) - (3.2)
•
Eq_ (3.1)canbe re_'nmlp_u

X = -H'l[xi + IC_ + G + R] + _ + (N"1- _)Q (3.3)

w'_i = _,m_ = [_,_/r-" _m,_= 0:$)_"a',_'V-d_ t_

ZI = AIZi + btUl + Ft(Z) + fl (Z)ui (3.4)

_ - r_in(z6); f_(z)q - me co,opm_q;te_ of(M-*-_o r_
ml_y_cm L .% is a cousta_ mau_x wh_h represe_ the Imear
_nvarla_ par_Of-M4 K,

[° 'j. (3.s)
AI a iall

wh,_.p,CL5_xe_em d,..,_ of-M-tK and th©m,lZ,w_ m'm of
.M-I[H+R +G].bl,thea,bee.',m_sa ve(:tortonnv_zlk_xo _ os

th_uppe_ha_

Ft(Z ) . bl Ot(Z ) (3._)

(Z) - bi el(z)ft

• D, e.,ha.,,.,. <
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cond;dou_ml_ d_ m_,d_ condidon5[8],guaramcethatd_
unccrta]_ does not influence the dynamics more than the control ;'`put
does [4!. Tbeoee d_-frsedom system,has been iilusU_cdby the
previousworks [91, and for the two defp_-of-fn_cdom _ arm,
eechl;"kisa]_d_d asa_. -:

The objective of model rderencc adaptive control is to " !

elindn_e tbe sure orror between the plant and the reference model so !
tlatthebehavie¢d theplatofollowsthemodel Camider_ reference !
mndrJfirs_

Z|l - knl Z., I + b,,1 r I (3.7a)

where _I ]T --- "Zat " [Xat ,

(3.7b)

" bt%t
wberu Kstand lr_i arc cumtsm matrices with the corr.pomling
dm_nda_

Also, Am, wh_ is a stable m,_rls, set_6es the Lyapunov

AntTPi " Pt Ani ° " Lt (3.7c) ,

qdsere Pi and LI arc _ dcfn_e and symmclsle ma_ces.
The sdgnal-synthesis method [10] implementedhere _eks to

mut_ tl_ *_cm by adjusti_ tl_ input ui which i* as d_m_.d ;" the
_equ_m

u| -Kzt Zt + Kbl r t + 1)t(e t) (3.8)

wl_re e i = z_ - zik referred to as the sxateerror madthe (xmction _| k
the a_ntrol hput to compcm_e the system msccrts;"ty. Thus, _ _ be

blTPlel , .
vhen [biTp1el I>_;I

IbtTe_*l I Pt(Z'et'r/)' i

_*t " (3._)
blTple I

_1(Z,el,rl), when "'lblTPlet I <_.
51

5#, ap,_l ix_tiv¢ mmtmt ,,d A i, a Xx,a'iv_mmmmtmI
beqx,amase_._p_.

As a result,the _,ror dyna_,'* of the subsystemis d_iwd _

,nd 09):

e| " Zunl " :71 ° Ante1 " bt(l_t + st)' (3.10a)

where

vt - Ot + EtlKzt + Kbt r t + !_11 13.10b)

Given the bouadedness of the state variablezt and the
r_fe_eu_e;-putrj,equation(3.10b)with(3.9)has the following

I, l s (z, r,), (3.11,)

where

I  l÷l  l(l , zll ÷ ÷ Ifll (3.1 b)

(3A1) cn be mlved,gince(32) k _ Therefrom,webavc

I)'1[10, I)]
To _ tl_ the e_r_ d_um_ ($.10) k u_'onnly bom_led,

tbeapproachk aho bascdon thcLyapunovcrkcrioncod d-*_*,torcf.
[8].Givm a ,---did_

i Vt - etTPt e, . (3.13a)

i mcl du=e aim

e,TL,e, - 2e,Tptbt(P, + vt)

i biPlel

! T Lte," 2[bTPlel][Pt JbiTptetJ
:_e t - 0t] (3.13)

Consequently, 't, $ 0

]_'thermore, to improve the ¢onwrl_u¢_ rate of equation

M,(t) - - atMt(t) + $tl btTPte , , (3.14)

where

4 _,_, - _,t. (L_)I_ Iz

Z_mqn(S t ) I,,I e

S, >0

lqotcmat,_u _-presemstbeminimumeiScm_.
The _ror dymunics of ti,* total system _m be prows mable by

smnm_g tbe indicia! LplmaOV _ (3.13) [TJ.Tbe block dingram
ofme_ ,dm_--_ol _ mowninr_ L

IV. SLVlUI_TIONS AND KXP_

The following section w_l demouurate the rcsuks oblamed
from the analytical works using RALF, which is in the Flexible
Aut_ _ory a_ Georgia Tcch. The arm is consmsctcd of two

foot links madtwo rot_ jo_. The _ond jo;"t k a_rm_d through
a pm*Mleloomm medum;"m by a hydraulic eyUnd_r at the I_u_ [11]. A
dm$_ _ ,a_pum_dy_mi_d mnddfor_.AX.__ beenmabnm_
wb._ t_ _mna n,_ ;. dm=m_ dmp_- aqxi_ FI.

A MkroVu II mn_ tbe VMS _ system k used to
provide high speed calculation for reel-time control and data-
.a_s_im. The_ ofD/X msd̂ /D is_ t_U/_OVo_ _d thc
tampl;"l_ tlme k 8 ms. For tbe_ m_eat, the bandwidth of
both hych'aulicmotors is above 45 Hz and the lowest fw of tbe
RALF are 5.69 Hz and 9.12 142. The pm_el llnk's lowest f_quency k
Mx_t 30 HA whic_ manet be ceetrolled. A line._ variable di_ereathd
trenaformor (LVDT) is the po_ition transducer mounted on the
hydrauik IdS_a rod, to that the _ probkm c_dsd_ in the
feedback control of fie]able structures may be avoided. The link
_ ;-olxa;"ndby.fi]_ eam,;-p_ _ eearthejoint.
Oue _ mode ;-adop(edfore,achllnkinthhwork.

_',--s,_jo_..po,_;mof_" ,ndthe,=o_ _ po-;_o,of
109" are setto be the "home" positionfor RALF. A fineafized
d,_nmJcaJ equation ;"osed to dea'iv_th-"constant Ip*;.nsKzi and Kbl ;,"
03) and 0.8). whilethe p, ylo,d ;- not_idu_ at thismoment[11].
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KZ|- [-2.8E7-1.35E4-2.8E5-1.]4E3] , (4.1)

KZZ- [-3.0E7 -1.01E4 -7.76E4 -2.68E2] ,

mdl_- 1.

The mira man,_ed w_5 the _olnt paddom and _.locides on om to
he the indcpundcm joint controUcrin (2__)m follows:

[,., 0]Kp" 0 3.0E7 (4.2)

2.8E5 0 ]K. it

,, 0 7.76E4

To eet bi, equation (3.2) needs to be satisfied ud ,6 has the
imcramm_ cicoz_ of zao.T_us,t__ b2ar_

[°0 14.31bl " 0.002

-0.Z59

0

0
bz " 0.03_

-5.267

The wdues ol'pi sad _i are chesca as 3.0E.5 and 2.0 respective. For the
decentralizeda_ control'_t is3_.2 sada i is dmply set to zero.

The distal ends of both the lower and the upper links arc
moved 24_3 inches in I second for joint point-to-point control. F'gurcs
2a-d show the time ruspousus of the feedback system without payload,
sad F_'cs _-d show n_nlts with a 30 IbI_ Note thin the be_
tracking and fast oscillation-setting time of each link occurs with
adapmiun but tim the link _ous damped out more dowry for the
joint PD matrol sad LOP., when the s_em los the payload un the tip.
However, all of the three controllers dcmoustrate the robusmem with
the varintictt of lmyloed. When the controHor is implemented in the
experiment, the gains arc scaled tomatch the physicalcapebiEtyofthe
s_/stcm.F'q_res4a,bshowthetimeresponsesofthejointswiththePD
controller and with the decentralized adaptive controller without
payload.The strainresponsesarcdemonstratedinF'qpu-es4c.f. W'sth
payload, the response is m shown in Fsgures 5. It should be mentiuned
thai the igavltational effect provides the partin/reama for the s_ady-
state csvor in the joint PD amtrd.

The results from simulations are compared with the
aperimcou to ,'nmuate smuda algcemeac Tlz fact thet tbc simplified
model, (die actuator dynamics _nored mid oac _ mode used),
implemented in the simu/ation may muse small deviation from the
matured _al dm is,however,e_,cted _d m:ept.b_fnm
_ coSincc_ pe_ of'_'_.

V. CONCLUSION

A flem'ble arm with positive pins and negative feedback
independently controlling each joint is shown theoretically ud
aperimesm_ to he stable. The daamtraliz_ algorithm results have
ahown much improvement of the system responses. To achieve
mzadtivity to variation of the payload, the adaixive scheme of control
is superior. The assumption of banded and small intcrcoancah_ action
between_ iscomequc_ _,propr_uc.
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Abstract

A robust tracking controller for a one link flexible arm based on a model reference

adaptive control approach is proposed. In order to satisfy the model matching conditions, the

reference model is chosen to be the optimally controlled linearized model of the system. The

resulting controller overcomes the fundamental limitation in previously published research on

direct adaptive control of flexible robots which required additional actuators solely to control

the flexible degrees of freedom. The nominal trajectory is commanded by means of a

tracking control. Simulation results for the prototype in the laboratory show improvements

obtained with the outer adaptive feedback loop" compared to a pure optimal regulator

control. Robustness is tested by varying the payload mass.



Introduction

Lightweight arms are a challengingresearchtopic with potential to improve over today's

robot performance.Control is one key to effective use of lighter arms,l_ but it is limited by

uncertainties in the arm's behavior and in the environment. The main problem with light-

weight structures is the flexible vibrations which are naturally excited as the arm is

commanded to move. 3

The first step in designing a control system consists of developing a dynamic model for the

flexible arm. A general dynamic modeling technique was established by Book, 4 based on a

recursive Lagrangian-assumed modes method. If one is interested in the regulator control

problem requiring that the arm reach a pre-specifled nominal state with satisfactory response,

the approach of linearizing the dynamic equations by assuming small motions around the

nominal state and neglecting terms of higher order, proves effective. An optimal control for a

one-link flexible arm was experimentally tested by Hastings and Book: Also, experimental

results with linear models were reported by Cannon and Schmitz 6, by Fukuda 7, by Sakawa et

al.8, and by Chalhoub and Ulsoy. 9 Frequency domain techniques, instead, were adopted by

Book and Majette 1° and recently revisited by Ower and Van de Vegte. 11

On the other hand, if one is concerned with controlling the arm while it is moving along a

pre-defined path with given velocity and acceleration of the joint variables, the technique of

linearizing the system is likely to fail. Furthermore, linearization around a sequence of

nominal states, as done by Sunada and Dubowski12 for instance, seems expensive



computationally and not necessarilyvery robust when applied to the overall nonlinear

dynamics.

This paper describes research on control for a one link flexible arm moving along a pre-

defined trajectories. The resulting controller overcomes the fundamental limitation in

previously published research on direct adaptive control of flexible robots which required

additional actuators solely to control the flexible degrees of freedom. Previous efforts aimed

at designing tracking controllers for flexible arms have been produced by Singh and Schy13

with a nonlinear inversion control, and by Davis and Hirschorn14 with a linear control. They

have both taken advantage, however, of additional active tip actuators. A nonlinear joint

tracking controller has been devised by DeLuca and Siciliano is. A singular perturbation

approach has been pursued, instead, by Siciliano and Book. 16

The approach adopted here is based on Model Reference Adaptive Control (MRAC), 17

as recently proposed by Siciliano et al.X8 In order to assure the satisfaction of the so-called

model matching conditions, the reference model is chosen as the linearized system (2nd order

terms neglected) as opt!mally controlled. Integral type adaptive actions guarantee the stability

of the overall system, as is proved via the Lyapunov direct method. However, since the

reference model turns out not to be decoupled, the reference trajectory is forced on the

system by means of a tracking controller. 19 A direct adaptive controller for a linear model of

a flexible arm was also designed by Meldrum and Balas20, but stability was guaranteed only

for a Special class of trajectories. An indirect adaptive control conversely, with dynamic

parameter identification was proposed by Canudas, De Wit and Van den Bossche. 21



A casestudy based on a laboratory prototype, whose dynamic model is describedin

Hastingsand Book22showsthat the control performswell when tracking a fast trajectory.The

whole nonlinear systemis consideredfor simulation purposes.Moreover, the control proves

robust to parametervariationssuchaspayloadchanges.

It must be mentioned that full state availability is assumedfor control synthesis.While

the state variables representingdeflection canbe obtained from strain gagemeasurements,5

their derivativesneedto be reconstructedbymeansof anobserver.23

Problem Formulation

Nonlinear equations of motion for a flexible arm can be derived using the Lagrangian

approach. 4 The deflection of the elastic members is represented as a linear combination of

admissible functions multiplied by time dependent generalized coordinates. 24 The flexible

motion of a link is then described by

n

u(n,t) :>-_ @i(n) 5i(t) (I)

i=I

where the @i(rl) are assumed in this paper to be eigenfunctions of a clamped-free beam, 6i(t)

are the generalized coordinates, and r/is any point along the undeformed link (see Fig. 1).

Furthermore, assuming that the amplitudes of the higher modes of the flexible link are very

small compared to the lower modes, n = 2 will be accurate enough to describe the flexible

motion.Z2,25

4



The derivation of the dynamicequationsfor the one link arm follows then asin Book4

and Sicilianoand Book16 i.e. (dropping the explicit reference to time dependence)

[,] [,1][0] [u]M(0,6) _ + f2 + K6 = 0 (2)

where 0 is the joint angle.

M is the inertia matrix.

fl and f2 are vectors containing nonlinear dynamic terms

(interactions of angular rates and deflections).

K is the effective spring matrix.

u is the net input torque.

Notice that in the model no actuator dynamics is considered, and no friction at the joints nor

in the structural vibrations is explicitly included. Define the full state vector

XT = [xPT, xvT] and x,,V = [t), 6T] = £pv (3)

The dynamic model of the flexible arm of Fig. 1 can be expressed in state variable form as

d[x010 i ][xpI [0]= + U

d-t xV AI(xP ) A2(xP,x v) xv B2(xP )
(4)

5



X = A(X)X + b(X)u

where

AI(xP)xP =M-I[ 0]K6

A2(xP'xV)xV = M-l[ f11f2

B2(xP)

(5)

At this point it becomes clear why the tracking control problem is difficult. If the goal is

just to require that the arm reaches a pre-specified nominal state, linearizing (5) around the

nominal state leads naturally to an optimal regulator in which one can eventually specify the

closed loop poles of the linearized system with an arbitrary degree of stability. However, if

one desires to control the arm while it moves along a pre-defined trajectory, in terms of joint

angle rates and accelerations, a different approach must be sought, rather than trying to

linearize (5) around a sequence of nominal states.

In order to obtain good trajectory tracking and steady-state accuracy, a direct MRAC

approach 17 is pursued in the following. The basic idea of this approach is to define a linear

time-invariant reference model and directly synthesize a controller that assures that the error

between the states of the system and those of the model tends to zero. To this purpose let

Xrn = AmXm + hmtlm (6a)



[0 i] [0]Am = bm = (6b)

At0 A20 b0

be a linear time-invariant reference model of the same dimension as the system described by

eqs. (5).

As in the work on MRAC for rigid manipulators,E6. 27 it would seem appropriate to select

a decoupled model for (6), i.e. A10 = diag(au a12 a13), all < 0, A20 = diag(a21 a22 a23), a2i < 0.

However the model matching conditions which are the basis of an MRAC approach 28 cannot

be satisfied independent from the particular values of A, Am, b, bin. This can be confirmed by

observing that the system described in (5) does not have as many control inputs as nontrivial

state variables (0, 61, 62), i.e. the lower block of vector b0 in (6b) is not a square block (a row

vector in this case).

In the particular case of the system in (-5), however, the nonlinear terms do not play a

dominant role, thus it appears adequate to choose a reference model on the basis of the

linearized model of the system (2nd order terms neglected) as optimally controlled; this

approach will be outlined in the next section.

Control Law Development

Following the basic MRAC scheme in Landau 17 a control for the overall system (5) - (6)

is proposed in the form

u=ul+u2 (7a)

ul = -KflX + K_u_ u2 = -AK_TX + AK_um (7b)

7



whereux is a linear model following control and u2representsthe adaptivecontrol which is

devoted to assuring the stability of the whole system.Under the action of control (7), the

system(5) becomes

X = As(X)X + b,_(X)um (8a)

As = A-b(K_T + 6.Kff), b_ = b(K_ + AK_). (8b)

Let then

e = Xm- X (9)

be the error between the model and system states. On reduction of (6) and (8), the error

dynamics are found to be

= A_e + (A_-A_)X + (b_-bs)u. (lO)

In order to satisfy the model matching conditions, the following should hold: 2s

Am = ._,-bKx T b_ = bK_ (11)

8



whereA. and b are the linearized forms of A and b, respectively. Assuming that the pair (._,b)

is stabilizable, KX can be designed by means of optimal control techniques for the linearized

system in (A,b). Ku is chosen equal to 1 for simplicity. Substituting (8b) and (11) into (10)

gives

e = Ame + [AA-/_blQT+bAKxT]x + [AbKu-bAK_]um (12)

where A-A= AA (13a)

and b-b = Ab (13b)

express the difference between the actual system and its linearized parts. In order to

guarantee the stability of the overall system, a candidate Lyapunov function is

V = eTPe + tr[(A,n - A_)Wa'I(Am - As)]

+ tr[(b= - bs)TFb'l(bm - bs)] (14)

where P, Fa, Fb are positive definite matrices. The derivative of V including (12) yields •

= eT(AmTP + PAm)e + 2tr[(AA-AbK.T+bAKxT)X(peXT-F_-I/k_)]

+ 2tr[(AblQ-bAKu)T(Peum-Fb-16s)] (15)

9



Setting,as isusual,

AmrP + PAn, =-H (16)

where H is a positive definite matrix, and assuming that the rate of the adjustable gains is

larger than that of the system, AI<x, AI_ > > A, b, leads to

"0" = -eH-Ie + 2tr[(AA-AbKJ + b/XKxT)T(PeX "r + F.-lb/_Kff)]

+ 2tr[(/_bKu-bAKu)T(Peum-Fb-lbAI_)] (17)

At this point the choice of

fiI(xr = -(bTFa-lb)-lbTPeX'r,

AKxT{ t=o = AKxJ (18a)

/_I(u = (bTFb'lb)'lbTPeum,

( 8b)

results in cancellation of the last two terms in (17), and assures that V is negative definite, thus

guaranteeing that e -* 0 (X -, Xm).

The only problem now remaining is to force the system to track a desired trajectory. This

point has been addressed by Meldrum and Balas 20but, even with an equal number of controls

10



and output variables,only a sinusoidalreferencetrajectorycould be commandedof the rigid

body motion. An inversemodel techniqueof the type proposedin Balestrino et al.26cannot

be adoptedsincethe model (6), satisfying(11), turns out not to be decoupled.However, the

state-spacedesignexistingin the referencemodel (6) appearsto provide a possiblewayout of

this dilemma by specifying the development of systematicdesignproceduresfor both the

optimal regulatorand the trackingproblems.19

Tracking Controller

The tracking problem was initially conceivedin order to extend state-spaceregulator

methodsto problemshavingexternalcommandinputs.Therefore, consideran output form

Y=CXm (19)

where Y is the output to be tracked.

C is aconstantmatrix.

Meanwhile, a control systemfor the referencemodel (6) and (19) must be synthesizedsuch

that in the steady-statecondition, the output Y becomesequal to somearbitrary desired

constant reference output Yr(t) = Yr. In order to pursue this goal, the integral error W

betweenthe referenceand the actualoutputsis definedasfollows :

11



W = Y,-Y or w = ft(Yr-Y)dt (20)

and the tracking control law can thus be written as

u,, = -K=X=- K_W (21)

where Kin, KI are the proportional and the integral gains respectively. Adjoining (20) and (21)

to (6), gives

Z = AoZ + BoY, (22)

where Z T = [X,_ T , W]

A 0 =
Am-bmKm -bmKl
-C 0

Bo= [ 0

It is claimed that the dynamic system (22) is asymptotically stable, if K_ is chosen

appropriately. Then, in the steady state,

lim Z = Z® =

t-_o

-I

[x.l ] [°1= - Yr

W® -C 0 I

(23)

where the inverse matrix exists due to the asymptotical stability. Clearly, the desired zero

error between Y and Y, is also obtained in the steady state, i.e. gltt Y(t) = Yr or _,_ W(t) = 0.

12



Now, the objective is to find thegainsKmand KI.Define

AX_=X_-X,, AW=W-W® AUra=Urn-U® (24)

whereu_ = -K_X,, - KIW®

The transient response is then governed by the set of differential equations

d[ Xm][Am01[ Xm]Aw -c o Aw
+ bm]

0

AU m (25)

An LQR design is utilized to minimize the performance functional for (25)

Io [Axmld = ([AXmTAW] Q LAW j + RAum2) dt (26)

This results in

I_ = RqbmSn

K_ = R'lbmS12

[$11 $121
where S = LSl2 $22J

> 0 is the solution of the Riccati equation.

(27a)

(27b)

In summary, since the constant matrix C is determined by the output Y, one needs at

least as many inputs as the number of outputs to be tracked and needs the dynamical system

(25) to be controllable. 19 Therefore, K m and KI are simultaneously derived as in (27). With

13



only one input, for example,the dynamicalsystem(25) in the caseof a one-link flexible arm

may be uncontrollable when the joint velocity is to tracked as is shown in the following

example.This mayresult in a singularsolution for the Riccati equation (27).Finally, the total

control problem becomesone of choosingthe feedbackconstantgainsK, Ku,alongwith the

adaptive gains AK_,/_K. for system stability, and I_ as well as the integral gain KI for the

desired reference tracking. In other words, u is composed of (7) and (21). The block diagram

of the total system is shown in Fig. 2.

The Case Study

In the following a case study is developed for the one link flexible arm existing in the

Flexible Automation Laboratory at Georgia Tech, whose specification is fully described in

Appendix A.

As far as the joint angle trajectory is concerned, the arm is required to move from 8i = 0

deg. to 0r = 90 deg. in 2 seconds, following a standard trapezoidal velocity profile with

maximum velocity b -- 60 deg./sec. The constant feedback gain resulting is KxT = [65.27

-176.13 -2937.23 27.27 -7.50 -67.27] and Ku = 1./_Kx T and/_K, (18) have been chosen with Fa

--- 21, Fb -- 0.005, and H = I in (16) such that the system under adaptive control is guaranteed

to be stable. AKxoT and AKuo are null here. An LQR design with Q = 21 and R = 1, which is

used to derive the tracking controller, results in Km T = [0.0 -0.635 -8.591 0.06 -0.056 0.046], KI

-- 0.031 for the joint angular velocity to be tracked (Fig. 4 - 7) (i.e. C r -- [0 0 0 1 0 0]). For

the joint angular position to be tracked (Fig. 8 - 11) (i.e. Cr = [1 0 0 0 0 0]), the tracking

14



controller is I_W = [0.616-0.793-10.0040.1335-0.0340.05], KI = 1.414.For the end point

position to be tracked (Fig. 12- 15) (i.e.C r = [4. 2.02 -1.365 0 0 0]), Km w and KI become [2.41

-1.27 -14.32 0.396 0.05 0.0058] and 1.4142. Also notice that the dynamic system which is

linearized around zero states from (4) is used to derive the optimal (constant) gains Kx. This

results in unstable responses for the constant (nonadaptive) feedback control system, when

the arm travels at high velocity.

Different sets of simulations have been carried out, one with the above design

parameters, and another one just with the constant feedback gains Kxr and Ku, without any

outer adaptive control. In order to analyze the control performance the whole nonlinear

model has been simulated for the system (5) in both cases. A sampling rate of .1 ms has been

adopted. Furthermore, the robustness of the system control to parameter variations has been

tested by doubling the payload mass, without changing the constant control gains. Figs. 4

through 15 illustrate the results obtained. It can be recognized that the adaptive control

performs better than the simple optimal control, as it results in better tracking accuracy.

First consider the case (Fig. 4 - 7) of joint velocity tracking. Fig. 4 shows the joint position

response with and without adaptive control and corresponding reference input. Fig. 5 shows

the joint velocity. Note better tracking occurs with adaptation but at the expense of some

oscillations as gains adapt. Fig. 6 shows differences in the end point position error with
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respectto the referencesignal.Fig. 7 showsthe joint torque. It shouldbe pointed out that the

dynamicalsystem(25) doesnot satisfythe criteria of controllability. Therefore, the solution

of the Riccati equation is singular, which causesundesirable response with inaccurate

tracking and oscillations. However, such problems do not arise for joint position and end

point tracking.

When the systemis usedto track ajoint position command(Fig. 8 - 11), the nonadaptive

control is unstable due to uncompensatednonlinearities and thus not plotted. The joint

position responseof the adaptivecontrol is shownin Fig. 8 with the referencejoint position

command and responsesfor a nominal payload as well as twice the payload used in the

design.The low steady-stateerror and the low effect of payloadchangeillustrate the robust

properties of the controller. Joint velocity, end point position error and control torques are

illustrated in Fig. 9 - 11.

Another quantity tracked in this analysisis the end point position. Figs. 12 - 15showthe

time responsesfor this simulation.The resultsare almostidentical to the abovejoint position

case,except that the end point position error is comparatively small during this control

process.Note that this requiresthat the referencemodel predict the end point position.

Conclusions

A model referenceadaptivecontrol hasbeenpresentedfor a one link flexible arm which

is basedon the preliminary resultsobtainedin Siciliano et al.18 In order to complywith the
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model matching conditions, the referencemodel hasbeen set up to be the linearized arm

model of the system as optimally controlled. Since the resulting reference model is not

decoupled, the desired joint angle trajectory is commandedthrough a tracking controller

proceedingthe overall system.Full state availability hasbeensupposedfor control synthesis.

The extensionof this work to the useof anobserverhasbeeninitiated and describedin Yuan

and Book.23

A casestudy hasbeen developedfor a prototype in the laboratory. Simulation results

have shown the advantageof using an outer adaptive feedbackcontrol with respectto the

pure optimal control and the robustness of the system control to payload variations.

Furthermore, for the tracking controller, only the joint velocity command is not

recommendedbasedon the resultsof thiswork.

It must be emphasized,however,that for multiple link flexible manipulators the results

obtained in this paper appear only partially satisfactory. In the caseof more degreesof

freedom,the nonlinear couplingtermsin the joint variables(which are not presentin the one

link case)maybecomedominant,particularly at high speed,andcontrol performanceis likely

to bederated.

This point, along with the problem of state reconstruction, or eventually considering

output feedback,constitutetwo challengingresearchissuesneedingadditional investigation.
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AppendixA : Specification of Experimental Properties

Beam
Length : 48 in

Section : 3/16 * 3/4 in2

EI : 4120

Material : Aluminum

Alloy : 6065-T6

payload

Weight : 0.1 lb
Material : Aluminum

Alloy : 6065-T6

Torque Motor
Manufacturer : INLAND MOTOR

Type : T-5730 (Permanet Magnet DC)
Rotor Inertia : 0.06 in-lb-sec 2
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Figure Captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1. The one link flexible arm

2. Block diagram of the total control scheme

3. 1st and 2nd mode shapes

4. Joint position profiles (joint velocity to be tracked)

5. Joint velocity profiles (joint velocity to be tracked)

6. End point position errors (joint velocity to be tracked)

7. Control torques (joint velocity to be tracked)

8. Joint position profiles (joint position to be tracked)

9. Joint velocity profiles (joint position to be tracked)

10. End point position errors (joint position to be tracked)

11. Control torques (joint position to be tracked)

12. Joint position profiles (end point position to be tracked)

13. Joint velocity profiles (end point position to be tracked)

14. End point position errors (end point position to be tracked)

15. Control torques (end point position to be tracked)
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CONTROL OF A MI._TI-I._ FLEX_LE _TOR WITH A D_ APPROACH

K S. Ymm, W. J. Book, J. D. HqKim
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mumm_memt,

md

mI

Uxl " k _- I _Ik Ulk

mi

vi" k 'tkvik

mI

Otz " k -_ 1 ;ik Oztk

NoCcdmt ,',--_ is sm_ _ imcludedas it is _ muc_
mud_.

"rl:e=,t_ toudstud===¢r_ PE=um bewrin==u
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eEd" _ t -_ ; J k Xdtjk _ijSik (2.26)

vheri

KdiJk " KxgJk + _|Jk + KzIjk

Ink i d Zi 2 d Zt 2

Ky|j k • Kzt_k - etc.

Now, _ _ Ininlto da_v=dwLmermml_"eqmdomdmodo_ From,
,L- _;ow_ alm.mlommmood_obe obumcd for m_ycoor_a_ m.=

, ,{ }
8ipq ° E t .Z i j Z o 141JpqxIJ (2.17)

n mt n mt n m
"t.zz jZ.o"i,lpq;, +4.z],iz.oaz.z

and

DKE 1 n mt n _aOt-xz l-z0 Q-zz
pq

a_ xij
Pq

(2.28)

am_ldN Ib_Ik_ b.,a_to

cl(PEe + PEd) mt
- .Zo8 x t KpIQ Xpt,

Pq

(2.19)

QUALITY

n ml n mi n m_r

I_I j_Omljpq xij +i_) J_O a-Zl/_-0

m(

HiJa_SpqXlJ _ +()0

vhere

(2.2)a)

Kptq Xpt + Gpq - Opq,

Htja_Pq " ax_ " 2 8Xpq '

o. a,,,,-am_'ni=dto,,=
h,mau_x_ form,

M(x)x x(x,x)x + _ + G(x). 0. (2.22)

where X is the slate variable measured from the reference

(_

'rm_mmzmm__ tbe _puuk:_ _ m_om f_ ri_ -,_ _mZW_robe_
m we _,y mim_ msida= above,white'k- _ eom'dim_e
variablesm,'ediHereamt.Additlomtl v_rbible_ namely the dlcflnctioo
c_rdb_e 50, ere used to _ the link d_orma_e m that the
stiffness coe_clenl K ill (:2.22)_r.s _'om the slxuhzeaerl_.
_orn, thecaodifioo_ •zZr_mymm_ Ovl-_ZHI)c_ be_Wbudr.d
Im(2.22)(Yuan,1989] as ithss beenfoundinthecaseof rilpd
mm,mil,,_m[..,,a__q6].

m. CONTROL AJ.GOPJ'rHM

ladepead_m llnctt coa_roUersex each _oint, commo_ caUcd joint
proportiona/-derivative (PD) controllers, ha_e provided adequate
position control for _ robotic arms [Asada, 19_], d,-ih,,rl_ for
fJ_u'z_m-m [Book, 19"/4].The rTsXemwith fk_ibO_ k shown to ha_

elmc-dmai_m_['Yuu. Z_eg]_ _ c_.c=m'dLz_d_
au_d forward w_b0_ c_Zopm_ o_mmmd_d m_zo_m_orit_
mln_ the decentralized s_se_n¢ that treats the oversil systemos seve_si
eulxyntcms Oo_J syae=s). Toe de_p_ for such Wntms d_ermines •
a_m,olstrecmrewhich_m_ inputstoa meto(locad_ and
ebocrv_mnavykocalm_.m ouq_. The __ tcm.mbe,r_eee
lu_systcms asc considered as uocen-;,,ti-s in (he m/lien and are
bounded D'u_, _eg].

In • muhi.llak flexible mmmipulator, M('X), the inertia matrix, is
rr_m_'ic and po_i_e deft-inc. _ore, one ,',,- _ •

wbc_

geq in (2.12) , vhen t- 0Kp/q Xp/ - Kd_ in (2.16) , when t , 0

and the |rmvity tem is

f n 8 T| . QT Mien q_O
"gTt _ p'8"'_ hl Tp Epq,

T,zp h, , .,,..q.0
Pq

I.](x) - *1
vhereII ,s. nom.
eqi_ (_.22)am ,_- bc rwria_ *-

(3.1)

;o-M" | (X) [H (X, X)X+I_+G(X) ]+BQ+(M"] (X)-_] Q (3.2)

Take eash link i _s a mlb_stem 8_d deS_ st_e vmiab_ ZT - [_,
)_], where the vector Xi is includes one joint coordlute and
Irx.rmJu_l d¢fleaio_ e.oordima_ f_ _ i (7.ti). _ (3.?,)
di_i_l into e equation for theu imem3unectedsulx,.nz,-m._fore.
e_w:hmbm,ym i_ _ • _n*._)rd_rdZam=ma_mJecp..__z_,:
foe

n J T t JAn

-_ - O , when p-n and q_ONote that t Z P q 8qn

modo_for _,q:

Zi - AlZi + blUi + Fi(Z) + fi(Z)ul, (3.3)
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i- *A-.mz - lz,._,__Jr
esd

farmbs?slcmi.A iis• cons,--,matr__ reprazaU_,c]iacaf
_,c-bvuim p*nd-M'*(X)K

[o ,]At - atl at2 ,
(3.4)

wh'I=Fi_ ) _-pr=sests the rmd -M'IK sad [be _ _ ot
.M'*_I+G].I_beo0m=$a _of fore wid, zro e.l_ms omtl_ q_
kiI£

0) re(Z) md _(Z) arc u_ed w be bomaod _I m md=kd --

e,(z) 6 l:,(_) ('_,)

Ai_(z_ ('_)

wbe_ ocRe n:T_s_ _ systm _.w_'y _d s coa_auomosRe

(h')( .J_.__.ooeuoaabL=.

e._J) - _t'Z_) O_)

_('_). b,_._ ('_,)

A model reference control w_ib siinil-syntbcils adaptation is
_np_=eSed b=_ _ ,_. u_fa=ioe of m_ n_ch_ coem_ O_5)
isasmmcd.Thcs_mndit_nsip_raatecd_ d_eunccnai_ re=or &x:_
no[ i=fl_.nc=tb_ d,/m_sicsmo_=than(becoum)_inl_ndo=*[Gutma=,
1979].Th__ ofmode]rerc_cnccadalX_ coa_o_ise._minated_e
Stile error between (be pith! and the referent-" model so rbal tbc

behaviorof' r,,b,cldaatrotlowt the model Coadd_ the refen:a_ model

ZIt - A tzmt + hi1?1 , (3.7)

_here

zm4"[xu1'xml]Tand 71 Is the r_erence 4nput.

And let

AIt- A1 + btlzt (3.8a)

bit . btKbt {3.8b)

_ ](= _I _ m co=_a- =.*-k=, of oom_ di_cJoL ,'d,_
A_,, ,ubk n_s-lx u_s _ L)_smov _

A T Pl + - LI (3.g)11 PIAml

,,s,_ e, ,,_ _ ,_ _,,ie,,,=de_ .,,am,.m.ic m_,=,.

Th=,ismd-,y=tk_ method [L.m_u, X9'79]implememed ben:*eeh *o
_oI the tym=mby adju.Ui_ the..iapm, which is u dem",'bed ia the

ut " Kz_zt * I_t "_t÷ _(*t ) (3.10)

vd_r=e_. z|.,. z, is reJ'=n-.dtoasmt_eu-ro_md tb_hmctioe_i istbe
i=_ to compc=u_c[besys(mu_nam_/. Tbm, k_ #i I_

_i(et) -

T P1elb I
pt(Z,_1,?1), vhen

Ib,e_',l>_ t
(3.]])

b_Ple I

-..._I_I(Z,11,71), vhen

,,ha,& _,,im_=e.xlpo.k_ cm,u._ "" #_isa Ix=i,_co=s_

As a remh,theerro¢d_,m_s otthesul_ysl_ik derivedbornthe

e I - AIIe I - bt(!_ t + vl) , (3.12a)

vhe_e

KI = O1+E1lkzl z t + kb1"YI + 01). (3.lZb)

Gh=a ,h,.boumiedmm,_ tl_ _aneynrbd:__ j:l ,h,,.n=_mma=_
"fb_ O.1])md(3._b)_ ,,,..r,o_k.,_i,,,_u_.

Iv,l ,t (z, e,' (3.,.)
_ere

  (Z,eJ ) lD (z)l+IE1(z)l(lKz z l
(3.13b)

+ IKblzI I+I, ('i)I)

•rbe defiald,,,, or#i i= (3.Lib)is_ i.e. (3.13) can ix _
(3.x) is _ _o,_ _ have

'i" I[i I) ][1oI I÷ I( IKzlII'i I

*1%1Ibt I)]
(3.]4)

To imure that the err_ d_amics (3.12) is _irormly boaded, the
spproach reJ_s m the L_pmov a.ilerk_ [V',_, 1.978].Gb_c_•
Lyapuaov_ =a_lida[¢

T
V(et) - etPte t (3.15)

md dm_m

"T T
V - eiPle I + • I Plel

T T
- -eILIe I - 2eiPlb1(_1+vl)

b_Ple I

T - Z[b_ Ptet] T _t ] .

r__._=_,_ < o.

(3.]6)
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_ore, tk err_ dynsmics_ duJctoud systemmn be proven to be
mabh:by summing the individualLyapu_ov_ [Ymm,xgeg]. To
imwovc the _ rate _ equad¢_ (3.12), 8meuax_ inputw (t)
it imroduo_lmd q,pnedto th=iaput _ it (3.X02)[4,_]. 'r=- ipu* is
d_tivg]y _ i_qlnd a=io_ Thu*,

ul " KZl ZI + Kbl _I + _I + wl

vhere

- T PIWl " "*I ul + $I ! bl el

and

(4AI Pl " ;,In(L1)le112)

% _ _,_n(St)l.ll 2

(3.17)

(3.18a)

(3.18b)

$1>0

IV. SIMULATIONS AND EXPERIMENTS

b tln pro,lout je,q_cL tlg dymmic modal of modae for t multi*link
fle,.zible muipulator has been derived and the control alaorithm
implemented here has been proven to be theoretically feuiblc.
Computez dmuttdom sod phys_ experiments dmuld be csrr_ oat
to test me work.A computer-controlledprototypetwo linkmulp_or.
R.ALFwith e _ ,creation me._umism, drivenby l_Iratdlc rims is
reed to padm.m tlds vu.ifcttiou. Eachlink k e cylimki_ fallow benm,
*-- feet lou& The pm.alleJuu_-Jumism'shuaxiomis fm'_ trenmissiou
to the u-ppe_link. The VndlJ_of dg robotic tuucrm_ is about socaty
pounds. Mored_m-tsare 10yen[Yumx,1989].

The trmnd'ormation ml_'ix F,i couudns deflection dlsphJo:ancmsmd
rotations as 8 function of position ! along tbe llnk. The spatial
dependence d these deflccdco_ thek shape, is th_redmlly rmlubed
om]yto me_t modest restrictices *t tlg link boundariesin an bafinite
ogdermodeL A finiteelcm_.nt apprene..hwns use,d to in this resnm'c|1to
dm.-mlaet_sbapesh'om d_dledmode_o(thclizklccmea'ymxl
amerind Wopcrdm. Of crucial impo_ucc to _c accura_'y _ * low
ord_ model are t_ bou=deryaxtditlom alWrr.dia deri_q me dmpeL
_ sprmpwere use.dto mlm_'_ the aclu_orsfor be_ liaks-
_ =assesa_l i=_tias _ ahoi_aced-' me _1 _ n_ Ii_k,
_=ldi_ bound_ coud_iomon rich l_ [Ymm,lg_9]. 'r_
m¢chanlsm is s_mldied*s a cotTeslmmli_ spring to theeequations
minionm _ i_ (2.22),re obud=_

A Micro-Vaz13 runinj uder me V]ML5ope_ system is reed to
Wo_dde bi_h-spe,cd calculationdurin|rzal-timecontrola_ldeta
acquisition. "rbe control prolram is writtco in Fortru ud the
s_cdutionofD/AendA/Disl2bits/10wdt. It remduJnu_pi_
amd adculazioe time d 7 ms. _ the advuced ama_ i, aqM_ed.
mmpatabentimelshtoeasedbyapSFommmz_1 eaton t_d o( fl
ms.Ho_,_,m', tlds,-,--plingratc is h:mkk tocomro; ,_.RAl,,Pslm:=
t_ budwidth o_ both bydtauGc scm_ors is _ 4.5Hz sad the
Icm_ mo_'eque_a _the R.A1.F arc_9HzmJdg.12Hz, vdn'k
tk hither mode fr=que_:ies m _d_ muau'ablc. T_ tblrd node

cm not be c_o_zc_.d.

Tbc m_uremc_ of the l_Stenpa,h_ce is reed fc_ fa'dback imtutd of
"-'_c_0_ _8_. ^_'_ vul-b_, difr_ _oma _T) is
thg u.amduce_.Becsm= ,_- LVDT is locateda| the same POS_as m the
,mmmr, me _ _ _miql ;-'_"reedb*dk_mml d
flange _ cambe svedded [Bab_ 19'_J. Su'ahtm monied
_ me b_ _d _Jp_ d each bsk pm_ a,c_m=_m d me
r-*, _ Tbc ,e_vo vdve of the bydr*u_c*=me,to_ b #'_e'= bYa

Tliz a_r _ iscarriedo_ mumb_ not_)4_adoume axl end

_" and the ,ccood _ois_d ;09". Tlz_m_-, me omsmm I_dm (Ka)
m.e_ - [Ymm,L_9].

I_.[-_ -_ -2.80F..5-L141_31 (4.1-)

_e me plm m,odmed with joint pmitiam md w.locltlm m.¢needed
to q_ mjcinl PD _ m follows:

u - -Kpq - Kl)q

2.82E7 0 ]Kp- 0 3.0E7 , (4.z)

2.8E5 0KD" 0 7.76E4

Equ,_ C'+J)reed, to be ,smmed i= dnr_ _ m_ mm _-* is h_re
ck.0_ astlrgban.tieroam'ixwith tl_ intuooenu:t_ t.='m d zm'o.Ih
m,t½,_.,ram,

,.I:]0.002
L-0.259

, (4.3)

[: ] (4,)b2 " 0.0373

L-5.z67J

The wdu_d #_ m (3.1]), is relatedto _ed unccm_s by(3.14).
_,i. sa to Ix 3.0_.5 born me ensine_rins _ end the v'slueof
isth£n2.0.FoethedecenuaUzedadept_v_c_mtrolleLSi is_ tom
13._E-3,wblka,issiml_sm tozcm.

T'=ge-.,Ipelt of eachilnkk movedabeut 8..5incbe, in 0A soa:m_ for
poiat-to-poim _trol. F'qpma2a,b mow me joim (re'rot) rmpmues
ud Figures 2c, d repruent the s_rain responses in simulation,.
Obviously. the decentradlzed edaptiv_ cmstrol results in the best
performance in the joint position trn_.kingas well _ flenl_e link
daunpins.,,tdk dz j_im PD cma_ dispLtysme Jowrel,ti_ _ o_
Ll_ttf_dbeck sy_cm. When the enntro|ier is implemented L_the
e=perimen_ the Ipdmm_ scakd to m*tch the p4xym_dmn_crist_ of
the syaem. Th_ F_n_ 3a,b sbowtimerespoma=dtbe]¢dntswith e
PD con_oU_r_1 with _n _hq_i_ decn_wMiz_ cm_:rol_. ]_gure_
4e,b end _n,b mustrme dee main _ occsm_ i= me lom_ end
the upper 7_r,swith different a_llers. "r___
azalm ian--- t/_am1/3 me dee needed by me PD cenauglc_.

'rbe results from slmu/atlons cD be cvmpmul with ezpedmems to
iilum_ste quaditativ_Np'cem©m.In iiabt d modd ,_-p_ou me
deviatiombetweco the czpa_mcm amd me a_'_n"_"' adKmkl,bowew_r,
be tolzmi_.

V. CONC_USIONS

An eft'n_tiveeppro*_ b,_d co l.,qp'mll_'s formula Dd me ms_ed
mode meshed Iresbe_ _ to de_ve d_ dym_mJ _ of

nd KDomindivldu_joint poskico mml_Jocity feedtatc_ me s_ean m
Imowutobe _.M_. "1_ dmpk bsdcpa=dem]oint coa_ kmb ton
,dqg_ dec=andized gbme to improve me _ ra_. Is me
nzpet'iz_nls, time rcspons@z -kow ¢ompau3_ w_h tJ_ L_re(_ld

Long dimma: mmioa m:l v'miationsd payk_ must be p_m'mcd ;,,
thc CZlm.imcnu_,, order to tcst co0ool _

ORIGINAL PA('_ IS
OF POOR "_UA` :.-r,.,
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